Communication
ChemComm
Notes and references
1 G. D. Brown, D. W. Denning and S. M. Levitz, Science, 2012, 336, 647.
2 F. C. Odds, Rev. Iberoam. Micol., 2005, 22, 229; M. A. Pfaller, D. J. Diekema,
M. G. Rinaldi, R. Barnes, B. Hu, A. V. Veselov, N. Tiraboschi, E. Nagy and
D. L. Gibbs, J. Clin. Microbiol., 2005, 43, 5848.
3 D. W. Denning and M. J. Bromley, Science, 2015, 347, 1414.
4 S. W. Dickey, G. Y. C. Cheung and M. Otto, Nat. Rev. Drug Discovery,
2017, 16, 457.
5 D. T. Hung, E. A. Shakhnovich, E. Pierson and J. J. Mekalanos,
Science, 2005, 310, 670.
6 C. I. Liu, G. Y. Liu, Y. Song, F. Yin, M. E. Hensler, W. Y. Jeng,
V. Nizet, A. H. Wang and E. Oldfield, Science, 2008, 319, 1391.
7 J. Zhang, H. Liu, K. Zhu, S. Gong, S. Dramsi, Y. T. Wang, J. Li,
F. Chen, R. Zhang, L. Zhou, L. Lan, H. Jiang, O. Schneewind, C. Luo
and C. G. Yang, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 13517.
8 X. Li, Y. Hou, L. Yue, S. Liu, J. Du and S. Sun, Antimicrob. Agents
Chemother., 2015, 59, 5885.
9 N. C. Silva, J. M. Nery and A. L. Dias, Mycoses, 2014, 57, 1.
10 D. H. Navarathna, J. M. Hornby, N. Hoerrmann, A. M. Parkhurst,
G. E. Duhamel and K. W. Nickerson, J. Antimicrob. Chemother., 2005,
56, 1156.
11 A. L. Santos and L. A. Braga-Silva, Mini-Rev. Med. Chem., 2013, 13, 155.
12 C. Sheng and W. Zhang, Curr. Med. Chem., 2011, 18, 733.
13 X. C. Li, M. R. Jacob, D. S. Pasco, H. N. ElSohly, A. C. Nimrod,
L. A. Walker and A. M. Clark, J. Nat. Prod., 2001, 64, 1282; Z. Zhang,
H. N. ElSohly, M. R. Jacob, D. S. Pasco, L. A. Walker and A. M. Clark,
J. Nat. Prod., 2002, 65, 979.
14 K. Stewart and C. Abad-Zapatero, Curr. Med. Chem., 2001, 8, 941.
15 A. Trabocchi, C. Mannino, F. Machetti, F. De Bernardis, S. Arancia,
R. Cauda, A. Cassone and A. Guarna, J. Med. Chem., 2010, 53, 2502.
16 T. Sato, M. Shibazaki, H. Yamaguchi, K. Abe, H. Matsumoto and
M. Shimizu, J. Antibiot., 1994, 47, 588.
17 S. M. Cutfield, E. J. Dodson, B. F. Anderson, P. C. Moody, C. J. Marshall,
P. A. Sullivan and J. F. Cutfield, Structure, 1995, 3, 1261; C. Abad-Zapatero,
R. Goldman, S. W. Muchmore, C. Hutchins, K. Stewart, J. Navaza,
C. D. Payne and T. L. Ray, Protein Sci., 1996, 5, 640.
18 M. Drag and G. S. Salvesen, Nat. Rev. Drug Discovery, 2010, 9, 690.
19 G. Dong, C. Sheng, S. Wang, Z. Miao, J. Yao and W. Zhang, J. Med.
Chem., 2010, 53, 7521.
20 J. Baell and M. A. Walters, Nature, 2014, 513, 481; C. Aldrich, C. Bertozzi,
G. I. Georg, L. Kiessling, C. Lindsley, D. Liotta, K. M. Merz, Jr.,
A. Schepartz and S. Wang, J. Med. Chem., 2017, 60, 2165.
21 C. Buchold, Y. Hemberger, C. Heindl, A. Welker, B. Degel, T. Pfeuffer,
P. Staib, S. Schneider, P. J. Rosenthal, J. Gut, J. Morschhauser,
G. Bringmann and T. Schirmeister, ChemMedChem, 2011, 6, 141.
22 Z. Jiang, N. Liu, D. Hu, G. Dong, Z. Miao, J. Yao, H. He, Y. Jiang,
W. Zhang, Y. Wang and C. Sheng, Chem. Commun., 2015, 51, 14648;
C. Sheng, W. Zhang, H. Ji, M. Zhang, Y. Song, H. Xu, J. Zhu, Z. Miao,
Q. Jiang, J. Yao, Y. Zhou and J. Lu, J. Med. Chem., 2006, 49, 2512.
23 M. S. Malamas, J. Erdei, I. Gunawan, J. Turner, Y. Hu, E. Wagner,
K. Fan, R. Chopra, A. Olland, J. Bard, S. Jacobsen, R. L. Magolda,
M. Pangalos and A. J. Robichaud, J. Med. Chem., 2010, 53, 1146.
24 J. Breger, B. B. Fuchs, G. Aperis, T. I. Moy, F. M. Ausubel and
E. Mylonakis, PLoS Pathog., 2007, 3, e18.
Fig. 6 In vivo antifungal potency of compound 23h. (A) Kaplan–Meier
survival of ICR mice infected with 0.5 ꢁ 107 CFU of C. albicans (ATCC
strain SC5314). ICR mice (n = 10) received vehicle or compound 23h
(2 mg kgꢀ1 body weight) treatment via i.p. injection at 24 h intervals for 7 d.
Statistical significance was examined with the log-rank test (vehicle vs.
compound 23h, P o 0.05). (C) Kaplan–Meier survival of ICR mice (n = 10)
infected with 0.5 ꢁ 107 CFU of C. albicans (fluconazole-resistant clinical
isolate 103). ICR mice were treated with fluconazole (0.5 mg kgꢀ1) and a
combination of fluconazole (0.5 mg kgꢀ1) and compound 23h (2 mg kgꢀ1).
Statistical significance was examined with the log-rank test (fluconazole
group vs. combination group, P o 0.005).
Second, for the first time, our study demonstrates that small
molecule-mediated inhibition of SAP2 can lead to therapeutic
effects for the treatment of IFIs. Third, the combination therapy
of the small molecule SAP2 inhibitor with fluconazole could be
an effective strategy to overcome drug resistance. Taken
together, these findings provide an important starting point
for the design of SAP2 inhibitors as an effective antivirulence
strategy to develop a new generation of antifungal agents.
This work was supported by the National Natural Science
Foundation of China (Grants 81573283 and 81725020 to C. S.)
and the Science and Technology Commission of Shanghai
Municipality (Grant 17XD1404700 to C. S.).
Conflicts of interest
25 R. Pukkila-Worley, A. Y. Peleg, E. Tampakakis and E. Mylonakis,
Eukaryotic Cell, 2009, 8, 1750.
There are no conflicts to declare.
13538 | Chem. Commun., 2018, 54, 13535--13538
This journal is ©The Royal Society of Chemistry 2018