10 of 11
MATHEW ET AL.
|
limitations such as missing hydrogens, side chains or loops and bond
orders concerns.[46] In this process, protein is also completely reviewed
and modified to retain water and heteroatoms critical for calculations,
followed by optimization of hydrogen bond orientations and restrained
minimization. A convergence threshold of 0.30 Å with OPLS 2005
force field was used to generate least energy and a problem free
protein system to be used for the computational studies.[47] All the
organic ligands used in the manuscripts are prepared by Ligprep and
used 3D coordinates using OPLS 2005 to maintain molecule's integrity
and stereochemistry, ionization at biological pH with minimized 3D
coordinates using OPLS 2005 force field.[48]
ORCID
Bijo Mathew
REFERENCES
[1] C. W. Olanow, W. G. Tatton, Annu. Rev. Neurosci. 1999, 22, 123.
[2] J. K. Andersen, Nat. Med. 2004, 10, S18.
[3] R. R. Ramsay, Curr. Pharm. Des. 2013, 19, 2529.
[4] B. Mathew, G. E. Mathew, J. Suresh, G. Ucar, R. Sasidharan, J. K.
Vilapurathu, S. Anbazhagan, V. Jayaprakash, Curr. Enzyme Inhib. 2016,
12, 115.
[5] M. B. Youdim, D. Edmondson, K. F. Tipton, Nat. Rev. Neurosci. 2006, 7,
295.
|
4.4.2 Flexible docking
[6] M. B. Youdim, Y. S. Bakhle, Br. J. Pharmacol. 2006, 147, S287.
[7] J. P. Finberg, M. Tenne, Br. J. Pharmacol. 1982, 77, 13.
[8] S. Carradori, R. Silvestri, J. Med. Chem. 2015, 58, 6717.
[9] R. H. Abeles, A. L. Maycock, Acc. Chem. Res. 1976, 9, 313.
[10] P. Foley, M. Gerlach, M. B. Youdim, P. Riederer, Parkinsonism Relat.
Disord. 2000, 6, 25.
The bioactive pose of molecules were generated using induced fit
docking or receptor flexible docking for highly active molecules using
the Schrodinger IFD tool against RCSB PDB ID (MAO-B) 2V61 which
was prepared earlier using protein preparation. A force field 2005
extended sampling protocol was set to generate 80 poses with
receptor hetero atom as the centroid for grid center. The sample ring
conformations, with an energy window 2.5 kcal/mol that penalizes the
amide, bonds non-planar conformations, and all loops within 5.0 Å
were subjected for loop conformations to explore ligand induced
effects in the protein that generates best least energy protein ligand
poses.[49,50]
[11] L. N. Zhao, L. Lu, L. W. Chew, Y. Mu, Int. J. Mol. Sci. 2014, 15, 12631.
[12] I. E. Orhan, F. S. Senol, Curr. Top. Med. Chem. 2016, 16, 1889.
[13] D. Knez, M. Sova, U. Kosak, S. Gobec, Fut. Med. Chem. 2017, 9,
811.
[14] D. Kim, S. H. Baik, S. Kang, S. W. Cho, J. Bae, M. Y. Cha, M. J. Sailor,
I. M. Jung, K. H. Ahn, ACS Cent. Sci. 2016, 2, 967.
[15] R. R. Ramsay, M. R. Popovic-Nikolic, M. L. Bolognesi, Clin. Transl. Med.
2018, 7, 3.
[16] F. Chimenti, R. Fioravanti, A. Bolasco, P. Chimenti, D. Secci, F. Rossi,
M. Yanez, F. Orallo, F. Ortuso, S. Alcaro, J. Med. Chem. 2009, 52,
2818.
|
[17] A. Hammuda, R. Shalaby, S. Rovida, D. E. Edmondson, C. Binda, A.
Khali, Eur. J. Med. Chem. 2016, 114, 162.
4.4.3 Molecular dynamics
Explicit molecular dynamics study for active ligand F2 against MAO-B
receptor using the aqueous solvent system was first prepared for the
protein-ligand complex using the Desmond system builder panel with
TIP4P aqueous solvation. Orthorhombic box shape and size was
minimized, followed by ions placements, after which membrane details
were added as per Protein Data Bank of Transmembrane proteins
systems were subjected to minimization relaxation molecular dynam-
ics followed by productions runs for 50 ns simulation time with NPT
ensemble at 300 K and pressure at 1.01325 bar. The pressure was
maintained by the Martyna–Tobias–Klein barostat and temperature
was regulated using a Nose-Hoover chain thermostat. Approximately
1000 frames for entire protein-ligand simulations could be used for
protein ligand interactions and stability trajectory analysis.[51]
[18] H. R. Liu, X. J. Liu, H. Q. Fan, J. J. Tang, X. H. Gao, W. K. Liu, Bioorg.
Med. Chem. 2014, 22, 6124.
[19] H. R. Liu, C. Zhou, H. Q. Fan, J. J. Tang, L. B. Liu, X. H. Gao, Q. A. Wang,
W. K. Liu, Chem. Biol. Drug Des. 2015, 86, 517.
[20] H. R. Liu, H. Fan, X. Gao, X. Haung, X. Liu, L. Liu, C. Zhou, J. Tang, Q.
Wang, W. Liu, J. Enzyme Inhib. Med. Chem. 2016, 31, 580.
[21] L. Pisani, M. Catto, F. Leonetti, O. Nicolotti, A. Stefanachi,
F. Campagna, A. Carotti, Curr. Med. Chem. 2011, 18, 4568.
[22] B. Mathew, A. A. Adeniyi, M. Joy, G. E. Mathew, A. Pillay,
C. Sudarsanakumar, M. E. S. Soliman, J. Mol. Struct. 2017, 1147,
682.
[23] B. Mathew, J. Suresh, S. Anbazhagan, J. Paulraj, G. K. Krishnan,
BioMed. Prev. Nut. 2014, 4, 451.
[24] B. Mathew, A. Haridas, J. Suresh, G. E. Mathew, G. Ucar,
V. Jayaprakash, Cent. Nerv. Syst. Agents Med. Chem. 2016, 16, 120.
[25] J. W. Choi, B. K. Jang, N. Cho, J. H. Park, S. K. Yeon, E. J. Ju, Y. S. Lee, G.
Han, A. N. Pae, D. J. Kim, K. D. Park, Bioorg. Med. Chem. 2015, 23,
6486.
[26] B. Mathew, G. E. Mathew, G. Uçar, I. Baysal, J. Suresh, J. K.
Vilapurathu, A. Prakashan, J. K. Suresh, A. Thomas, Bioorg. Chem.
2015, 62, 22.
ACKNOWLEDGMENTS
This research was supported by the Basic Science Research Program
through the National Research Foundation (NRF) of Korea, which is
funded by the Ministry of Education (2017R1D1A3B03028559) (to H.
Kim).
[27] B. Mathew, G. E. Mathew, G. Uc
Haridas, V. Jayaprakash, Chem. Biodiversity 2016, 13, 1046.
[28] B. Mathew, G. Ucar, G. E. Mathew, S. Mathew, P. K. Purapurath,
̧ar, I. Baysal, J. Suresh, S. Mathew, A.
̧
F. Moolayil, S. Mohan, S. V. Gupta, ChemMedChem 2016, 11, 2649.
[29] B. Mathew, G. E. Mathew, G. Ucar, M. Joy, E. K. Nafna, K. K.
Lohidakshan, J. Suresh, Int. J. Bio. Macromol. 2017, 104, 1321.
[30] B. Mathew, G. Uçar, S. Yabanoğlu-Çiftçi, I. Baysal, J. Suresh, G. E.
Mathew, J. K. Vilapurathu, N. A. Moosa, N. Pullarottil, L. Viswam, A.
Haridas, F. Fathima, Lett. Org. Chem. 2015, 12, 605.
CONFLICT OF INTEREST
The authors have declared no conflict of interest.