10820
J.H. Yao et al. / Tetrahedron 64 (2008) 10814–10820
400 MHz):
d
[ppm] 8.70 (s, 1H), 7.97 (t, 3H), 7.92 (d, 1H), 7.76 (m,
2H), 7.02 (d, 2H), 6.72 (m, 4H), 6.35 (d, 2H), 4.90 (s, 1H), 1.34 (s, 6H),
1.22 (d, 36H). MS (MALDI): 1398.966 (m/z), calcd for C89H79N2IrO2:
1398.562.
5H), 7.59 (d, 2H), 7.42 (d, 3H), 7.28 (d, 1H), 7.13 (t, 1H), 7.04 (s, 1H),
6.72 (d, 3H), 1.17 (s, 18H). 13C NMR (CDCl3, 100 MHz):
d
[ppm] 157.3,
151.1, 150.6, 150.3, 149.9, 149.1, 141.9, 141.6, 141.5, 140.3, 139.5, 138.3,
136.8, 128.0, 127.6, 127.5, 127.3, 126.8, 125.0, 124.4, 122.9, 122.1,
120.9, 120.5, 120.3, 35.0, 31.6, 29.9. MS (MALDI): 581.299 (m/z),
calcd for C44H39N: 581.308.
References and notes
1. Shirota, Y. J. Mater. Chem. 2000, 10, 1.
2. Borchardt, J. K. Mater. Today 2004, September 42.
Compound L4 was synthesized with a yield of 74% as white
3. Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471.
4. Hung, L. S.; Chen, C. H. Mater. Sci. Eng. R. 2002, 39, 143.
5. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
6. He, G.; Pfeiffer, M.; Leo, K.; Hofmann, M.; Birnstock, J.; Pudzich, R.; Sadbeck,
J. Appl. Phys. Lett. 2004, 85, 3911.
7. Shih, P.-I.; Chien, C.-H.; Chuang, C.-Y.; Shu, C.-F.; Yang, C.-H.; Chen, J.-H.; Chi, Y.
J. Mater. Chem. 2007, 17, 1692.
8. Holder, E.; Langeveld, B. M. W.; Schubert, U. S. Adv. Mater. 2005, 17, 1109.
9. Kohler, A.; Wilson, J. S.; Friend, R. H. Adv. Mater. 2002, 14, 701.
10. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl.
Phys. Lett. 1999, 75, 4.
needle crystal. 1H NMR (CDCl3, 400 MHz):
d [ppm] 8.35–8.33 (d,
J¼7.8 Hz, 1H), 8.10–8.02 (m, 3H), 7.93–7.91 (d, J¼7.8 Hz, 1H), 7.76–
7.74 (d, 3H), 7.69–7.64 (m, 2H), 7.48–7.38 (m, 5H), 7.14–7.11 (t, 1H),
6.74–6.71 (m, 3H), 1.14 (s, 18H). 13C NMR (CDCl3, 100 MHz):
d [ppm]
157.5, 151.0, 150.7, 150.2, 148.9, 148.3, 143.4, 141.3, 139.5, 139.5,
136.5, 129.8, 129.7, 128.3, 127.7, 127.7, 127.5, 127.2, 126.2, 125.1,124.4,
123.4, 120.9, 120.5, 120.4, 119.4, 35.0, 31.6. MS (MALDI): 555.295 (m/
z), calcd for C42H37N: 555.292.
11. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.;
Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304.
12. Lamansky, S.; Kwong, R. C.; Nugent, M.; Djurovich, P. I.; Thompson, M. E. Org.
Electron. 2001, 2, 53.
4.9. General procedure for the synthesis of the Ir(III)
complexes
13. Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455.
14. Beeby, A.; Bettington, S.; Samuel, I. D. W.; Wang, Z. J. Mater. Chem. 2003, 13, 80.
15. Steuber, F.; Staudigel, J.; Stossel, M.; Simmerer, J.; Winnacker, A.; Speritzer, H.;
Weissortel, F.; Salbeck, J. Adv. Mater. 1999, 12, 130.
16. Geng, Y.; Datsis, D.; Gulligan, S. W.; Ou, J. J.; Chen, S. H.; Rothberg, L. J. Chem.
Mater. 2002, 14, 463.
A mixture of a ligand (1.4 mmol), iridium chloride trihydrate
(0.25 g, 0.7 mmol), water (7.5 mL), and 2-ethoxyethanol (22.5 mL)
was deoxygenated and then heated to reflux under nitrogen for 24 h.
After cooling to room temperature, the mixture was filtrated and
washed with ethanol to give product chloride-bridged dimer. Then,
a mixture of the chloride-bridged dimer (0.56 g, 0.2 mmol), acetyl
acetone (50 mg, 0.5 mmol), ethanol (0.3 mL), dichloromethane
(15.6 mL), and tetrabutylammonium hydroxide (129 mg) was de-
oxygenatedand heatedtoreflux under nitrogen for 2 h. Aftercooling
to room temperature, the mixture was evaporated in vacuo. After
column chromatographic purification (silica gel, dichloromethane),
the final Ir complex products were obtained with yields ranging
from 32% to 43%.
17. Kim, J. Pure Appl. Chem. 2002, 74, 2031.
18. Wong, K.-T.; Liao, Y.-L.; Su, H.-C.; Wu, C.-C. Org. Lett. 2005, 7, 5131.
19. You, Y.; Park, S. Y. J. Am. Chem. Soc. 2005, 127, 12438.
20. Rathore, R.; Burns, C. L. J. Org. Chem. 2003, 68, 4071.
21. Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828.
22. Lo, S.-C.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Macromolecules 2003, 36, 9721.
23. Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.;
Friend, R. H.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 7041.
24. Zhang, K.; Chen, Z.; Yang, C. L.; Qin, J. G.; Cao, Y. Organometallics 2007, 26, 3699.
25. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.;
Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
26. Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am.
Chem. Soc. 2003, 125, 636.
27. Duan, J.-P.; Sun, P.-P.; Cheng, C.-H. Adv. Mater. 2003, 15, 224.
28. Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola,
G. M.; Naso, F.; Cola, L. D. J. Mater. Chem. 2006, 16, 1161.
29. Mak, C. S. K.; Hayer, A.; Pascu, S. I.; Watkins, S. E.; Holmes, A. B.; Kohler, A.;
Friend, R. H. Chem. Commun. 2005, 4708.
Compound C1 was synthesized from L1 with a yield of 32% as
yellow solid. 1H NMR (CDCl3, 400 MHz):
d [ppm] 8.59 (d, 2H), 7.84
(d, 4H), 7.63 (m, 4H), 7.34 (m, 6H), 7.14 (m, 8H), 7.08 (m, 4H), 6.97 (d,
2H), 6.77 (d, 4H), 6.70 (d, 2H), 5.23 (s, 1H), 1.81 (s, 6H). MS (MALDI):
1075.309 (m/z), calcd for C65H43N2IrO2: 1075.286.
30. Sun, Y.-H.; Zhu, X.-H.; Chen, Z.; Zhang, Y.; Cao, Y. J. Org. Chem. 2006, 71, 6281.
31. Jung, S.; Kang, Y.; Kim, H. S.; Kim, Y. H.; Lee, C. L.; Kim, J. J.; Lee, S. K.; Kwon, S. K.
Eur. J. Inorg. Chem. 2004, 17, 3415.
Compound C2 was synthesized from L2 with a yield of 43% as
a yellow solid. 1H NMR (CDCl3, 400 MHz):
d [ppm] 8.58 (d, 2H), 7.68
32. Hay, P. J. J. Phys. Chem. A 2002, 106, 1634.
(m, 8H), 7.31 (m, 6H), 7.10 (m, 4H), 6.99 (s, 2H), 6.91 (t, 4H), 6.70 (d,
2H), 6.58 (d, 2H), 6.48 (s, 2H), 5.24 (s, 1H), 1.79 (s, 6H), 1.15 (s, 18H),
0.89 (s, 18H). MS (MALDI): 1300.437 (m/z), calcd for C81H75N2IrO2:
1300.546.
33. Ding, J.; Gao, J.; Fu, Q.; Cheng, Y.; Ma, D.; Wang, L. Synth. Met. 2005, 155, 539.
34. Chen, L.; Yang, C.; Qin, J.; Gao, J.; You, H.; Ma, D. J. Organomet. Chem. 2006, 691,
3519.
35. Ono, K.; Joho, M.; Saito, K.; Tomura, M.; Matsushita, Y.; Naka, S.; Okada, H.;
Onnagawa, H. Eur. J. Inorg. Chem. 2006, 3676.
36. van, A.; DijkenBastiannsen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.;
Rothe, C.; Monkman, A.; Bach, I.; Stossel, P.; Brunner, K. J. Am. Chem. Soc. 2004,
126, 7718.
37. Gong, X.; Lim, S. H.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. J. Appl.
Phys. 2004, 95, 948.
Compound C3 was synthesized from L3 with a yield of 37% as
yellow solid. 1H NMR (CDCl3, 400 MHz):
d [ppm] 8.37 (d, 2H), 7.73
(m, 6H), 7.57 (d, 2H), 7.34 (m, 8H), 7.03 (t, 2H), 6.88 (m, 4H), 6.58 (m,
6H), 6.17 (s, 2H), 5.15 (s, 1H), 1.15–1.13 (d, 36H). MS (MALDI):
1452.729 (m/z), calcd for C93H83N2IrO2: 1452.609.
38. King, S. M.; Al-Attar, H. A.; Evans, R. J.; Congreve, A.; Beeby, A.; Monkman, A. P.
Adv. Funct. Mater. 2006, 16, 1043.
39. Velusamy, M.; Thomas, K. R. J.; Chen, C.-H.; Lin, J. T.; Wen, Y. S.; Hsieh, W.-T.; Lai,
C.-H.; Chou, P.-T. Dalton Trans. 2007, 3025.
Compound C4 was synthesized from L4 with a yield of 32% as
red solid. 1H NMR (CDCl3, 400 MHz):
d
[ppm] 8.69 (d, 2H), 8.44 (m,
4H), 7.91 (m, 6H), 7.72 (m, 6H), 7.54 (d, 2H), 7.39 (m, 6H), 7.14 (m,
40. Kim, Y.-H.; Kim, H.-S.; Kwon, S.-K. Macromolecules 2005, 38, 7950.