Bi-, Tri-, and Tetrametallic Complexes of Ru(II) and Os(II)
Organometallics, Vol. 28, No. 1, 2009 199
None of these methods is widely applicable to the preparation
of unsymmetrical heterobimetallic organometallic complexes.
This report applies the approach outlined in Scheme 14 to the
area of group 8 alkenyl chemistry.
Caulton,17 Hill,18 and others,19 as well as by ourselves.20 The
most convenient triphenylphosphine-stabilized alkenyl com-
plexes to use as starting materials are those of the forms
[Ru(CR1dCHR2)Cl(CO)(PPh3)2]13 and[Ru(CR1dCHR2)Cl(CO)-
(BTD)(PPh3)2] (BTD ) 2,1,3-benzothiadiazole),18a where BTD
is a labile ligand. A marked advantage of the latter is that it
avoids contamination with tris(phosphine) material. Reaction
of [Ru(C(Ct CPh)dCHPh)Cl(CO)(BTD)(PPh3)2] with the pip-
erazine dithiocarbamate S2CNC4H8NH2 yielded the cation
[Ru(C(Ct CPh)dCHPh)(S2CNC4H8NH2)(CO)(PPh3)2]Cl (1). The
retention of the enynyl ligand was indicated by a broadened
singlet resonance for Hꢀ at 6.29 ppm in the 1H NMR spectrum,
while peaks for the piperazine protons were seen at 2.59 and
3.49 ppm. Resonances for the NH2 protons were not generally
observed and were assumed to be broad and/or obscured by
other resonances. Three characteristic bands were visible in the
solid-state infrared spectrum (KBr/Nujol) for the νCdC, νCO, and
νCS absorptions at 2148, 1924, and 999 cm-1, respectively. A
mutually trans disposition of phosphines was indicated by a
singlet in the 31P NMR spectrum at 38.0 ppm. A molecular ion
at m/z 1018 and satisfactory elemental analysis confirmed the
overall composition of the compound. The particularly advanta-
Results and Discussion
A wide range of ruthenium alkenyl complexes11 is readily
accessible from hydrometalation of alkynes by the compounds
[RuHCl(CO)L2/3] (L ) PiPr3,12 PPh313), and many aspects of
the resulting alkenyl complexes have been explored in funda-
mental work by the groups of Werner,14 Esteruelas,15 Santos,16
(11) For an overview of alkenyl chemistry of ruthenium(II), see: (a)
Whittlesey, M. K. In ComprehensiVe Organometallic Chemistry III;
Crabtree, R. H., Mingos, D. M. P., Bruce, M. I., Eds.; Elsevier: Oxford,
U.K., 2006; Vol. 6. (b) Hill, A. F. In ComprehensiVe Organometallic
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon
Press: Oxford, U.K., 1995; Vol. 7.
(12) Werner, H.; Esteruelas, M. A.; Otto, H. Organometallics 1986, 5,
2295–2299.
(13) Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. J. Organomet. Chem.
1986, 309, 169–177.
(14) (a) Jung, S.; Ilg, K.; Brandt, C. D.; Wolf, J.; Werner, H. Eur.
J. Inorg. Chem. 2004, 469–480. (b) Jung, S.; Brandt, C. D.; Wolf, J.; Werner,
H. Dalton Trans. 2004, 375, 383. (c) Werner, H.; Jung, S.; Gonzalez-
Herrero, P.; Ilg, K.; Wolf, J. Eur. J. Inorg. Chem. 2001, 1957–1961. (d)
Jung, S.; Ilg, K.; Wolf, J.; Werner, H. Organometallics 2001, 20, 2121–
2123. (e) Werner, H.; Stu¨er, W.; Jung, S.; Weberndo¨rfer, B.; Wolf, J. Eur.
J. Inorg. Chem. 2002, 1076–1080. (f) Werner, H.; Stark, A.; Steinert, P.;
Grunwald, C.; Wolf, J. Chem. Ber. 1995, 128, 49–62.
1
geous spectroscopic features of the enynyl ligand (Hꢀ in H
NMR, νCdC in IR) led to complex 1 being employed as the
primary starting point for the multimetallic complexes described
here. To complete the characterization of the compound, single
crystals were grown and a structural study undertaken (Figure
1):
(15) (a) Esteruelas, M. A.; Lo´pez, A. M.; On˜ate, E. Organometallics
2007, 26, 3260–3263. (b) Bolano, T.; Castarlenas, R.; Esteruelas, M. A.;
On˜ate, E. J. Am. Chem. Soc. 2006, 128, 3965–3973. (c) Eguillar, B.;
Esteruelas, M. A.; Oliva´n, M.; On˜ate, E. Organometallics 2005, 24, 1428–
1438. (d) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. Organometallics
2001, 20, 3283–3292. (e) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E.
Organometallics 2001, 20, 2294–2302. (f) Esteruelas, M. A.; Garc´ıa-Yebra,
C.; Oliva´n, M.; On˜ate, E.; Tajada, M. Organometallics 2000, 19, 5098–
5106. (g) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. Organometallics
2000, 19, 5454–5463. (h) Buil, M. L.; Esteruelas, M. A.; Garc´ıa-Yebra,
C.; Gutie´rrez-Puebla, E.; Oliva´n, M. Organometallics 2000, 19, 2184–2193.
(i) Bohanna, C.; Buil, M. L.; Esteruelas, M. A.; On˜ate, E.; Valero, C.
Organometallics 1999, 18, 5176–5179. (j) Bohanna, C.; Callejas, B.;
Edwards, A.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N.; Valero,
C. Organometallics 1998, 17, 373–381. (k) Esteruelas, M. A.; Go´mez, A. V.;
Lo´pez, A. M.; On˜ate, E. Organometallics 1998, 17, 3567–3573. (l)
Esteruelas, M. A.; Liu, F.; On˜ate, E.; Sola, E.; Zeier, B. Organometallics
1997, 16, 2919–2928. (m) Buil, M. L.; Elipe, S.; Esteruelas, M. A.; On˜ate,
E.; Peinado, E.; Ruiz, N. Organometallics 1997, 16, 5748–5755. (n)
Esteruelas, M. A.; Lahoz, F. J.; On˜ate, E.; Oro, L. A.; Sola, E. J. Am. Chem.
Soc. 1996, 118, 89–99. (o) Bohanna, C.; Esteruelas, M. A.; Herrero, J.;
Lo´pez, A. M.; Oro, L. A. J. Organomet. Chem. 1995, 498, 199–206. (p)
Bohanna, C.; Esteruelas, M. A.; Lahoz, F. J.; On˜ate, E.; Oro, L. A.; Sola,
E. Organometallics 1995, 14, 4825–4831. (q) Bohanna, C.; Esteruelas,
M. A.; Lahoz, F. J.; On˜ate, E.; Oro, L. A. Organometallics 1995, 14, 4685–
4696. (r) Crochet, P.; Esteruelas, M. A.; Lo´pez, A. M.; Mart´ınez, M.-P.;
Oliva´n, M.; On˜ate, E.; Ruiz, N. Organometallics 1998, 17, 4500–4509.
(16) (a) Go´mez-Lor, B.; Santos, A.; Ruiz, M.; Echavarren, A. M. Eur.
J. Inorg. Chem. 2001, 2305–2310. (b) Castan˜o, A. M.; Echavarren, A. M.;
Lo´pez, J.; Santos, A. J. Organomet. Chem. 1989, 379, 171–175. (c)
Montoya, J.; Santos, A.; Echavarren, A. M.; Ros, J. J. Organomet. Chem.
1990, 390, C57-C60. (d) Loumrhari, H.; Ros, J.; Torres, M. R.; Santos, A.;
Echavarren, A. M. J. Organomet. Chem. 1991, 411, 255–261. (e) Montoya,
J.; Santos, A.; Lo´pez, J.; Echavarren, A. M.; Ros, J.; Romero, A. J.
Organomet. Chem. 1992, 426, 383–398. (f) Lo´pez, J.; Romero, A.; Santos,
A.; Vegas, A.; Echavarren, A. M.; Noheda, P. J. Organomet. Chem. 1989,
373, 249–258. (g) Echavarren, A. M.; Lo´pez, J.; Santos, A.; Montoya, J. J.
Organomet. Chem. 1991, 414, 393–400. (h) Torres, M. R.; Vegas, A.;
Santos, A.; Ros, J. J. Organomet. Chem. 1987, 326, 413–421. (i) Torres,
M. R.; Santos, A.; Ros, J.; Solans, X. Organometallics 1987, 6, 1091–
1095. (j) Santos, A.; Lopez, J.; Matas, L.; Ros, J.; Galan, A.; Echavarren,
A. M. Organometallics 1993, 12, 4215–4218.
The geometry at the metal center is a slightly distorted
octahedral arrangement with cis-interligand angles in the range
70.33(4)-93.16(14)°. The enynyl ligand is displaced by around
13° from the plane formed by the ruthenium center and the other
donor atoms. Otherwise, the data associated with the enynyl
ligand are comparable to those reported for previous examples.20a,b
The S2CNC2 unit of the dithiocarbamate ligand is almost
coplanar, due to the well-established multiple-bond character
of the C-N bond. The closest comparable structure is that of
the bimetallic species [{(dppm)2Ru}2(S2CNC4H8NCS2)](BF4)2.4a
(18) (a) Hill, A. F.; Melling, R. P. J. Organomet. Chem. 1990, 396,
C22-C24. (b) Hill, A. F.; Harris, M. C. J.; Melling, R. P. Polyhedron 1992,
11, 781–787. (c) Harris, M. C. J.; Hill, A. F. Organometallics 1991, 10,
3903–3906. (d) Bedford, R. B.; Hill, A. F.; Thompsett, A. R.; White, A. J. P.;
Williams, D. J. Chem. Commun. 1996, 1059, 1060. (e) Hill, A. F.; White,
A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. Organometallics 1998,
17, 4249–4258. (f) Cannadine, J. C.; Hill, A. F.; White, A. J. P.; Williams,
D. J.; Wilton-Ely, J. D. E. T. Organometallics 1996, 15, 5409–5415. (g)
Hill, A. F.; Ho, C. T.; Wilton-Ely, J. D. E. T. Chem. Commun. 1997, 2207,
2208. (h) Hill, A. F.; Wilton-Ely, J. D. E. T. J. Chem. Soc., Dalton Trans.
1999, 3501, 3510. (i) Cowley, A. R.; Hector, A. L.; Hill, A. F.; White,
A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. Organometallics 2007,
26, 6114–6125.
(19) (a) El Guaouzi, M.; Ros, J.; Solans, X.; Font-Bard´ıa, M. Inorg.
Chim. Acta 1995, 231, 181–186. (b) Matas, L.; Muniente, J.; Ros, J.;
Alvarez-Larena, A.; Piniella, J. F. Inorg. Chem. Commun. 1999, 2, 364–
367. (c) El Guaouzi, M.; Ya´n˜ez, R.; Ros, J.; Alvarez-Larena, A.; Piniella,
J. F. Inorg. Chem. Commun. 1999, 2, 288–291. (d) Torres, M. R.; Perales,
A.; Loumrhari, H.; Ros, J. J. Organomet. Chem. 1990, 385, 379–386. (e)
Matas, L.; Moldes, I.; Soler, J.; Ros, J.; Alvarez-Larena, A.; Piniella, J. F.
Organometallics 1998, 17, 4551–4555. (f) Loumrhari, H.; Ros, J.; Torres,
M. R.; Perales, A. Polyhedron 1990, 9, 907–911. (g) Maddock, S. M.;
Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Organometallics 1996, 15,
1793–1803. (h) Deshpande, S. S.; Gopinathan, S.; Gopinathan, C. J.
Organomet. Chem. 1991, 415, 265–270. (i) Bedford, R. B.; Cazin, C. S. J.
J. Organomet. Chem. 2000, 598, 20–23.
(17) (a) Huang, D. J.; Renkema, K. B.; Caulton, K. G. Polyhedron 2006,
25, 459–468. (b) Marchenko, A. V.; Ge´rard, H.; Eisenstein, O.; Caulton,
K. G. New J. Chem. 2001, 25, 1382–1388. (c) Marchenko, A. V.; Ge´rard,
H.; Eisenstein, O.; Caulton, K. G. New J. Chem. 2001, 25, 1244–1255. (d)
Coalter, J. N.; Streib, W. E.; Caulton, K. G. Inorg. Chem. 2000, 39, 3749–
3756. (e) Pedersen, A.; Tilset, M.; Folting, K.; Caulton, K. G. Organome-
tallics 1995, 14, 875–888.
(20) (a) Wilton-Ely, J. D. E. T.; Wang, M.; Benoit, D.; Tocher, D. A.
Eur. J. Inorg. Chem. 2006, 3068–3078. (b) Wilton-Ely, J. D. E. T.;
Pogorzelec, P. J.; Honarkhah, S. J.; Tocher, D. A. Organometallics 2005,
24, 2862–2874. (c) Wilton-Ely, J. D. E. T.; Honarkhah, S. J.; Wang, M.;
Tocher, D. A. Dalton Trans. 2005, 1930–1939. (d) Wilton-Ely, J. D. E. T.;
Wang, M.; Honarkhah, S. J.; Tocher, D. A. Inorg. Chim. Acta 2005, 358,
3218–3226.