N-Aryl Peptoids
A R T I C L E S
Scheme 1. Comparison of Peptide and Peptoid Structures
initial step in understanding the sequence–structure relationships
that can guide the predictable design of diverse folded
architectures.
The construction of sequence-specific oligomers with well-
defined conformations typically relies on one of two design
concepts. The first strategy is to employ flexible oligomer
systems that can establish long-range noncovalent interactions
to direct folding. This is evident in biopolymers, where hydrogen
bonding and hydrophobic interactions aid in defining protein
structures.8 These interactions are also seen in non-natural
oligomers, in particular ꢀ-peptides, whose diverse secondary
structures can be defined by various intramolecular hydrogen-
bonding patterns.3 The second design strategy is to use
oligomers incorporating rigid monomer units with conforma-
tionally constrained linkages. This method allows for predictable
organization of the oligomer backbone through local confor-
mational preferences. For example, the semirigid covalent
linkages between monomer units in oligo(m-phenylene-ethy-
nylenes) predispose the oligomers to form helical conforma-
tions.4a-c
We adopt a general approach for designing complex self-
assembled structures in biomimetic macromolecules that entails,
first, the discovery of monomer types predisposed to generate
well-defined conformations that can be propagated through local
interactions upon oligomerization; second, an effort to solve
three-dimensional structures of diverse oligomer sequences in
order to describe these conformations; third, the use of
computational tools employing an energy function to sample
conformational space and evaluate variations in conformational
preferences for different oligomer sequences. Implementation
of this strategy would then rely upon an iterative process to
guide the synthesis of increasingly complex structures. In
practice, analysis of experimental findings can ensure the
suitability of the computational tools, and the energy function
in turn can guide subsequent generations of oligomer sequences.
This study embarks upon such an approach.
ylene group which can confer flexibility, and there is no intrinsic
capacity within the backbone to establish long-range interactions,
as there are no hydrogen-bond donors (Scheme 1). Nevertheless,
the incorporation of bulky, branched N-alkyl substituents has
been shown to generate local steric interactions that can direct
conformational preferences.10a A variety of peptoids bearing
these side chains exhibit a polyproline type I helical secondary
structure with repeating cis-amide bonds.5,10 In solution,
however, this structure is the dominant member of a multicon-
formational ensemble.5,10c
A critical impediment to the design of peptoids with stable
secondary structures is that there is substantial conformational
heterogeneity associated with the ability to populate both cis-
and trans-amide bond geometries.10c Peptoids bearing bulky,
branched N-alkyl side chains exhibit only a modest energetic
preference for cis-amide bonds, with a cis-trans-free energy
difference typically under 1 kcal/mol.10a,11 Efforts have been
made to modulate this conformational preference by tuning
stereoelectronic interactions between proximal backbone amide
groups and side chains.11b In short oligomers, however, this
approach generally does not yield energetic preferences sub-
stantially above 1 kcal/mol. It is not yet evident if such energy
differences between cis- and trans-amide bonds will be sufficient
to establish conformational homogeneity in longer oligomers.
Alternatively, strategies have been explored to establish long-
range constraints that can better define peptoid backbone
conformation. One strategy that has proven effective in reducing
Our investigations are focused on a class of peptidomimetics
known as peptoids. These oligomers are composed of a wide
variety of N-substituted glycine monomer units that can be
efficiently linked in a sequence-specific manner.9 Cursory
inspection would suggest that peptoids are poor candidates for
folding. The peptoid backbone repeating unit includes a meth-
(5) Armand, P.; Kirshenbaum, K.; Goldsmith, R. A.; Farr-Jones, S.;
Barron, A. E.; Truong, K. T. V.; Dill, K. A.; Mierke, D. F.; Cohen,
F. E.; Zuckermann, R. N.; Bradley, E. K. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 4309–4314.
(6) (a) Murphy, J. E.; Uno, T.; Hamer, J. D.; Cohen, F. E.; Dwarki, V.;
Zuckermann, R. N. Proc. Natl. Acad. Sci. 1998, 95, 1517–1522. (b)
Werder, M.; Hauser, H.; Abele, S.; Seebach, D. HelV. Chim. Acta
1999, 82, 1774–1783. (c) Kritzer, J. A.; Lear, J. D.; Hodsdon, M. E.;
Schepartz, A. J. Am. Chem. Soc. 2004, 126, 9468–9469. (d) Arnt, L.;
Nusslein, K.; Tew, G. N. J. Polym. Chem., Part A 2004, 42, 3860–
3864. (e) Yin, H.; Frederick, K. K.; Liu, D.; Wand, J.; DeGrado, W. F.
Org. Lett. 2006, 8, 223–225.
(10) (a) Armand, P.; Kirshenbaum, K.; Falicov, A.; Dunbrack, R. L.; Dill,
K. A.; Zuckermann, R. N.; Cohen, F. E. Folding Des. 1997, 2, 369–
375. (b) Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand,
P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.;
Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303–
4308. (c) Wu, C. W.; Kirshenbaum, K.; Sanborn, T. J.; Patch, J. A.;
Huang, K.; Dill, K. A.; Zuckermann, R. N.; Barron, A. E. J. Am. Chem.
Soc. 2003, 125, 13525–13530.
(7) (a) Bekele, H.; Fendler, J. H.; Kelly, J. W. J. Am. Chem. Soc. 1999,
121, 7266–7267. (b) Cuccia, L. A.; Ruiz, E.; Lehn, J. M.; Homo, J. C.;
Schmutz, M. Chem.sEur. J. 2002, 8, 3448–3457. (c) Hou, J.-L; Yi,
H.-P.; Shao, X.-B.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Wu, L.-Z.; Tung,
C.-H.; Li, Z.-T. Angew. Chem., Int. Ed. 2006, 45, 796–800. (d) Brown,
N. J.; Wu, C. W.; Seurynck-Servoss, S. L.; Barron, A. E. Biochemistry
2008, 47, 1808–1818.
(11) (a) Sui, Q.; Borchardt, D.; Rabenstein, D. L. J. Am. Chem. Soc. 2007,
129, 12042–12048. (b) Gorske, B. C.; Bastian, B. L.; Geske, G. D.;
Blackwell, H. E. J. Am. Chem. Soc. 2007, 129, 8928–8929.
(12) (a) Shin, S.-B.Y.; Yoo, B.; Todaro, L.; Kirshenbaum, K. J. Am. Chem.
Soc. 2007, 129, 3218–3225. (b) Holub, J. M.; Jang, H.; Kirshenbaum,
K. Org. Lett. 2007, 9, 3275–3278. (c) Maulucci, N.; Izzo, I.; Bifulco,
G.; Aliberti, A.; De Cola, C.; Comegna, D.; Gaeta, C.; Napolitano,
A.; Pizza, C.; Tedesco, C.; Flot, D.; De Riccardis, F. Chem. Commun.
2008, 3927–3929.
(8) (a) Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci.
U.S.A. 1951, 37, 205–211. (b) Dill, K. A. Biochemistry 1990, 29, 7133–
7155. (c) Chan, H. S.; Dill, K. A. Annu. ReV. Biophys. Biophys. Chem.
1991, 20, 447–490.
(9) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10545–10647.
9
J. AM. CHEM. SOC. VOL. 130, NO. 49, 2008 16623