synthesis of substituted cyclopentenones via Ramberg-Ba¨cklund
reactions.2 They are also effective substitutes for unreactive cis-
dienes in Diels-Alder reactions.3 Vedejs et al. utilized the 1,4-
addition of an amine to dihydrothiopyran-4-ones to construct
the eight-membered ring intermediate for the synthesis of
pyrrolizidine alkaloid octonecine.4 More recently, Oh reported
the synthesis of the biotin core from a simple cyclic vinyl
sulfide.5 Despite the significance of heterocyclic thioenol ethers
in organic chemistry, methods for their synthesis are few and
are dominated by the intramolecular nucleophilic substitution6
or thio-Michael addition7 reactions. Other methods include the
iodocyclization of alkynyl sulfides,8 the nickel-catalyzed electro-
reduction of unsaturated thioacetates and thiosulfonates,9 as well
as indirect methods that do not involve the formation of C-S
bonds.10 These strategies suffer from either low efficiency or
limited scope of application. It is therefore highly desirable to
develop efficient and general methods for the preparation of
heterocyclic thioenol ethers. We report here that the copper-
catalyzed intramolecular S-vinylation of thiols with vinyl
chlorides or bromides provides a convenient and efficient entry
to 2-alkylidene-substituted thietanes, tetrahydrothiophenes, and
tetrahydro-2H-thiopyrans.
“Ligand-Free” CuI-Catalyzed Highly Efficient
Intramolecular S-Vinylation of Thiols with Vinyl
Chlorides and Bromides
Qiwu Zhao,‡ Ling Li,§ Yewen Fang,† Deqian Sun,‡ and
Chaozhong Li*,†,‡,§
Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 354 Fenglin Road, Shanghai 200032,
People’s Republic of China, Department of Chemistry,
UniVersity of Science and Technology of China, Hefei,
Anhui 230026, People’s Republic of China, and Department
of Chemistry, Tongji UniVersity, 1239 Siping Road,
Shanghai 200092, People’s Republic of China
ReceiVed October 07, 2008
Metal-catalyzed C-S bond formations have played an
important role in organosulfur chemistry.11 With the renaissance
of Ullmann coupling in the past few years,12 the copper-
catalyzed cross-coupling reactions of thiols and aryl halides have
been demonstrated to be a powerful tool in the formation of
aryl C-S bonds.13 By the appropriate choice of copper source,
ligand, and base, these coupling reactions have been developed
to include a wide range of substrates under mild conditions.13
The high stability and low cost of the copper catalysts, along
with the easy availability of the ligands, make these transforma-
tions a superior choice in organic synthesis.14 This method was
then successfully extended to the intermolecular S-vinylation
of thiols with vinyl iodides or bromides.15 However, the
With CuI as the catalyst and K3PO4 ·3H2O as the base, highly
efficient intramolecular S-vinylation of thiols with vinyl
chlorides or bromides was successfully implemented without
the help of an additional ligand. Moreover, the competition
experiments revealed that the 4-exo cyclization is funda-
mentally preferred over other modes (5-exo, 6-exo, and
6-endo) of cyclization.
(3) (a) Ward, D. E.; Gai, Y Can. J. Chem. 1997, 75, 681. (b) Ward, D. E.;
Nixey, T. E.; Gai, Y.; Hrapchak, M.; Abaee, M. S. Can. J. Chem. 1996, 74,
1418. (c) Ward, D. E.; Nixey, T. E. Tetrahedron Lett. 1993, 34, 947.
(4) Vedejs, E.; Galante, R. J.; Goekjian, P. G. J. Am. Chem. Soc. 1998, 120,
3613.
Heterocyclic thioenol ethers are a group of sulfur heterocycles
with important biological interest.1 For example, the vinyl sulfide
cyclized analogues of the octapeptide angiotension II show the
agonist activity with Ki values less than 2 nM.1c Another typical
example is Griseoviridin, which contains a nine-membered
cyclic vinyl sulfide moiety and serves as a broad-spectrum
antibiotic.1d In the meantime, heterocyclic thioenol ethers are
also useful intermediates in organic synthesis.1-5 Conjugated
cyclic thioenol ethers have been used as precursors for the
(5) Oh, K. Org. Lett. 2007, 9, 2973.
(6) (a) Lei, M.-Y.; Fukamizu, K.; Xiao, Y.-J.; Liu, W.-M.; Twiddy, S.; Chiba,
S.; Ando, K.; Narasaka, K. Tetrahedron Lett. 2008, 49, 4125. (b) Miyauchi, H.;
Chiba, S.; Fukamizu, K.; Ando, K.; Narasaka, K. Tetrahedron 2007, 63, 5940.
(c) Bonini, B. F.; Franchini, M. C.; Fochi, M.; Mazzanti, G.; Ricci, A.
Tetrahedron 1997, 53, 7897. (d) Federsel, H.-J.; Merenyi, G. J. Org. Chem.
1981, 46, 4724. (e) Federsel, H.-J.; Bergman, J.; Stenhede, U. Heterocycles 1979,
12, 751.
(7) (a) Corbet, M.; Zard, S. Z. Org. Lett. 2008, 10, 2861. (b) Oh, K.; Kim,
H.; Cardelli, F.; Bwititi, T.; Martynow, A. M. J. Org. Chem. 2008, 73, 2432.
(8) (a) Ren, X.-F.; Konaklieva, M. I.; Turos, E.; Krajkowski, L. M.; Lake,
C. H.; Janik, T. S.; Churchill, M. R. J. Org. Chem. 1995, 60, 6484. (b) Ren,
X.-F.; Turos, E.; Lake, C. H.; Churchill, M. R. J. Org. Chem. 1995, 60, 6468.
(9) Ozaki, S.; Matsui, E.; Saiki, T.; Yoshinaga, H.; Ohmori, H. Tetrahedron
Lett. 1998, 39, 8121.
† Chinese Academy of Sciences.
‡ University of Science and Technology of China.
§ Tongji University.
(1) For selected examples, see: (a) Stephens, P. J.; Devlin, F. J.; Gasparrini,
F.; Ciogli, A.; Spinelli, D.; Cosimelli, B. J. Org. Chem. 2007, 72, 4707. (b)
Budriesi, R.; Carosati, E.; Chiarini, A.; Cosimelli, B.; Cruciani, G.; Ioan, P.;
Spinelli, D.; Spisani, R. J. Med. Chem. 2005, 48, 2445. (c) Johannesson, P.;
Lindeberg, G.; Johansson, A.; Nikiforovich, G. V.; Gogoll, A.; Synnergren, B.;
Le Greves, M.; Nyberg, F.; Karlen, A.; Hallberg, A. J. Med. Chem. 2002, 45,
1767. (d) Marcantoni, E.; Massaccesi, M.; Petrini, M.; Bartoli, G.; Bellucci, M. C.;
Bosco, M.; Sambri, L. J. Org. Chem. 2000, 65, 4553.
(10) Bonini, B. F.; Franchini, M. C.; Fochi, M.; Mangini, S.; Mazzanti, G.;
Ricci, A. Eur. J. Org. Chem. 2000, 2391.
(11) Kondo, T.; Mitsudo, T.-a. Chem. ReV. 2000, 100, 3205.
(12) For reviews, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
2428. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337. (d)
Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2004, 24, 150. (e) Dehli,
J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973. (f) Chemler, S. R.; Fuller,
P. H. Chem. Soc. ReV. 2007, 36, 1153. (g) Evano, G.; Blanchard, N.; Toumi, M.
Chem. ReV. 2008, 108, 3054.
(2) (a) Jeffery, S. M.; Sutherland, A. G.; Pyke, S. M.; Powell, A. K.; Taylor,
R. J. K. J. Chem. Soc., Perkin Trans. 1 1993, 2317. (b) Casy, G.; Taylor, R. J. K.
Tetrahedron 1989, 45, 455.
10.1021/jo802235e CCC: $40.75
Published on Web 11/26/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 459–462 459