Organic Letters
Letter
predicts that reactions of 3b (E = −23.54)15 and 3c (E =
−18.92)15 with phosphines 1a,b and borohydrides are not
kinetically possible at room temperature, the observed reaction
outcome given in Figure 3 is presumably the result of a proton
induction at the carbonyl oxygen that enhances the electro-
philicities of the enones 3b,c. In the case of the reactions of
2a,b−HB(C6F5)3 with the Michael acceptors 3d,e, phosphine
and hydride transfer events are possible because of the high
reactivity of both electrophiles. However, as proton activation is
less favorable, the phosphine attacks are highly reversible and
reduction pathway predominates.
In summary, we have performed kinetic and thermodynamic
assessments of the nucleophilcity and carbon Lewis basicity of
two hindered phosphines 1a,b, commonly used in FLP
chemistry. Though this work treats the reactivity of these two
specific phosphines, it clearly demonstrates how one can use
Mayr’s kinetic and thermodynamic parameters to deeply
understand reaction mechanisms of FLP−catalyzed reduction
of Michael acceptors. Assessment of the nucleophilicity and
Lewis basicity of other hindered phosphines are currently
ongoing in our laboratories and will be reported in due course.
(4) (a) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552. (b) Liu, Y.;
Du, H. J. Am. Chem. Soc. 2013, 135, 6810. (c) Liu, Y.; Du, H. J. Am.
Chem. Soc. 2013, 135, 12968. (d) Wei, S.; Du, H. J. Am. Chem. Soc.
2014, 136, 12261. (e) Zhang, Z.; Du, H. Angew. Chem., Int. Ed. 2015,
54, 623. (f) Ren, X.; Du, H. J. Am. Chem. Soc. 2016, 138, 810.
(5) For selected examples, see: (a) Wu, D.; Jia, D.; Liu, A.; Liu, L.;
Guo, J. Chem. Phys. Lett. 2012, 541, 1. (b) Spies, P.; Erker, G.; Kehr,
G.; Bergander, K.; Frohlich, R.; Grimme, S.; Stephan, D. W. Chem.
̈
̈
Commun. 2007, 5072. (c) Ozgun, T.; Bergander, K.; Liu, L.; Daniliuc,
̈
C. G.; Grimme, S.; Kehr, G.; Erker, G. Chem. - Eur. J. 2016, 22, 11958.
(d) Whittemore, S. M.; Edvenson, G.; Camaioni, D. M.; Karkamkar,
A.; Neiner, D.; Parab, K.; Autrey, T. Catal. Today 2015, 251, 28.
(e) Rokob, T. A.; Hamza, A.; Pap
́
ai, I. J. Am. Chem. Soc. 2009, 131,
10701. (f) Momming, C. M.; Otten, E.; Kehr, G.; Frohlich, R.;
̈
̈
Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48,
6643.
(6) Morozova, V.; Mayer, P.; Berionni, G. Angew. Chem., Int. Ed.
2015, 54, 14508. According to Mayr’s rule of thumb, a nucleophile−
electrophile combination is possible when E + N > −5. Accordingly,
Michael acceptors having electrophilicity smaller or equal to −15
should react with phosphonium borohydride (N ≈ 10) at 20 °C.
(7) Greb, L.; Tussing, S.; Schirmer, B.; Ona-Burgos, P.; Kaupmees,
̃
K.; Lokov, M.; Leito, I.; Grimme, S.; Paradies, J. Chem. Sci. 2013, 4,
2788.
̃
(8) Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D.
̃
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164.
(9) Ullrich, M.; Lough, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2009,
131, 52.
S
(10) (a) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem., Int. Ed. 2002,
41, 91. (b) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36,
66. (c) Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.
(d) Mayr, H.; Lakhdar, S.; Maji, B.; Ofial, A. R. Beilstein J. Org. Chem.
2012, 8, 1458. (e) Mayr, H. Tetrahedron 2015, 71, 5095. (f) Lakhdar,
S. Quantitative Treatments of Nucleophilicity and Carbon Lewis
Basicity. In Lewis Base Catalysis in Organic Synthesis; Vedejs, E.,
Denmark, S., Eds.; Wiley-VCH, 2016, Chapter 4. (g) Access to all
data are provided at: Mayr, H. Database of Nucleophilicties and
General procedures and NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(11) Kempf, B.; Mayr, H. Chem. - Eur. J. 2005, 11, 917−927.
(12) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956.
(13) Mayr, H.; Ammer, J.; Baidya, M.; Maji, B.; Nigst, T. A.; Ofial, A.
R.; Singer, T. J. Am. Chem. Soc. 2015, 137, 2580.
Notes
The authors declare no competing financial interest.
(14) Ines
Alcarazo, M. Angew. Chem., Int. Ed. 2012, 51, 12367.
(15) Allgauer, D. Dissertation, Faculty of Chemistry and Pharmacy,
́
, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.;
ACKNOWLEDGMENTS
We thank the CNRS, Normandie Universite,
(ANR-11-LABX-0029) for financial support. J.D. is grateful to
■
̈
́
and Labex Synorg
LMU Munchen, 2014.
̈
the “Minister
for a fellowship. We thank Prof. Dr. Herbert Mayr (LMU−
Munchen) for insightful discussions and Nathalie Hampel
̀ ́
e de l’enseignement superieure et de la recherche”
̈
(LMU−Munchen) for synthesizing reference electrophiles.
̈
REFERENCES
■
(1) (a) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54,
6400. (b) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49,
46. (c) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740.
(d) Paradies, J. Synlett 2013, 24, 777. (e) Mahdi, T.; Stephan, D. W.
J. Am. Chem. Soc. 2014, 136, 15809. (f) Scott, D. J.; Fuchter, M. J.;
Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813. (g) Cooperative
Catalysis: Designing Efficient Catalysts for Synthesis;Peters, R., Ed.;
Wiley-VCH: Weinheim, 2015.
(2) (a) Ero
Tarkanyi, G.; Soos
Mehdi, H.; Papai, I.; Rokob, T. A.; Kiral
Angew. Chem., Int. Ed. 2010, 49, 6559.
̋
s, G.; Nagy, K.; Mehdi, H.; Pap
, T. Chem. - Eur. J. 2012, 18, 574. (b) Ero
y, P.; Tarkanyi, G.; Soos
́
ai, I.; Nagy, P.; Kiral
s, G.;
, T.
́
y, P.;
́
́
́
̋
́
́
́
́
́
(3) (a) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306. (b) Stephan, D.
W. J. Am. Chem. Soc. 2015, 137, 10018. (c) Welch, G. C.; San Juan, R.
R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
D
Org. Lett. XXXX, XXX, XXX−XXX