T.S. Lobana et al. / Polyhedron 29 (2010) 1130–1136
1131
S
1
C
2
NH
R1
H
2
C
3
N
1
NHR2
R2 = CH3, Pyridine-2-carbaldehyde-N-methyl thiosemicarbazone (HpytscN-Me)
R2 = C2H5, Pyridine-2-carbaldehyde-N-ethyl thiosemicarbazone (HpytscN-Et)
R2 = C6H5, Pyridine-2-carbaldehyde-N-phenyl thiosemicarbazone (HpytscN-Ph)
R1 =
R1 =
,
N
OH R2 = CH3, Salicylaldehyde-N-methyl thiosemicarbazone (H2stscN-Me)
R2 = C2H5, Salicylaldehyde-N-ethyl thiosemicarbazone (H2stscN-Et)
,
R2 = C6H5, Salicylaldehyde-N-phenyl thiosemicarbazone (H2stscN-Ph)
Chart 1. Ligands used.
2.1. Synthesis of complexes
2.1.5. [Ni(j
3-O, N3, S-stscN-Et)(PPh3)] (5)
M.p. 198–200 °C, Yield, 53%. Anal. Calc. for C28H26NiN3OPS: C,
61.85; H, 4.97; N, 7.73. Found: C, 62.12; H, 4.67; N, 7.95%. Main
2.1.1. [Ni(
j
3-N4, N3, S-pytscN-Me)2]ÁH2O (1)
To a suspension of HpytscN-Me ligand (0.039 g, 0.200 mmol) in
acetonitrile (15 mL) was added solid Ni(OAc)2 salt (0.025 g,
0.100 mmol), and contents were refluxed for 5 h and the red com-
pound formed during refluxing was crystallized from acetonitrile
and dichloromethane (3:1: v/v). M.p. 292–294 °C, Yield: 56%. Anal.
Calc. for C16H20NiN8S2O: C, 41.45; H, 4.32; N, 24.18. Found: C,
IR peaks (KBr, cmÀ1),
m
(N–H) 3420s,
(C@N) + (C@C) 1600s, 1541s,
(C–N), 1045 m, 1026 m, 920 m,
(C–S) 841br. 1H NMR (d, CDCl3),
m
(C–H) 3078w, 3055w,
2976w, 2929w,
m
m
m
(P–C) 1097s,
m
m
d = 8.32 (d, 1H, C2H), 7.80 (m, 6H, o-H), 7.44 (m, 9H, p-H + m-H),
7.26(d, 1H, C5H), 7.07(t, 1H, C6H), 6.60 (t, 1H, C8H), 6.41 (d, 1H,
C7H), 4.71 (s, br, 1H, N1H), 3.31 (m, 2H, CH2), 1.13 (t, 3H, CH3)
41.87; H, 4.08; N, 24.40%. Main IR peaks (KBr, cmÀ1),
m
(N–H),
(C@C), 1601s,
m(C–S) 836s. Magnetic moment,
ppm. 31P NMR (CDCl3), d = À120.37 ppm.
dPPh3) = 25.29 ppm.
Dd(dcomplex–
3233s,
1514s,
m
m
(C–H), 3015w, 2928w, 2878w,
(C–N), 1099s, 1038s,
m(C@N) + m
2.1.6. [Ni(j
3-O, N3, S-stscN-Me)(py)] (6)
leff = 2.98 BM.
Complexes 2 and 3 were prepared similarly.
M.p. 192–94 °C, Yield, 69%. Anal. Calc. for C14H14NiN4OS: C,
48.69; H, 4.06; N, 16.23. Found: C, 48.52; H, 4.21; N, 16.15%. Main
IR peaks (KBr, cmÀ1),
m
(N–H) 3221s,
m
(C–H) 3084w, 3020w, 2988w,
(C–S)
2.1.2. [Ni(j
3-N4, N3, S-pytscN-Et)2] (2)
m(C@N) +
m
(C@C) 1603s, 1524s, (C–N), 1070s, 1022s, 943s, m
m
M.p. above 300 °C, Yield, 59%. Anal. Calc. for C18H22N8NiS2: C,
829s. 1H NMR (d, CDCl3), d = 8.82 (s, 1H, o-H(py)), 7.88 (s, 1H, C2H),
7.44 (t, 1H, p-H(py)), 7.31 (t, 2H, m-H(py)), 7.18 (m, 2H, C5H + C6H),
6.85(d, 1H, C8H), 6.63(t, 1H, C7H), 4.61(d, 1H, N1H), 2.90(d, 3H,
CH3).
45.64; H, 4.65; N, 23.67. Found: C, 45.59; H, 5.01; N, 23.75%. Main
IR peaks (KBr, cmÀ1),
m
(N–H) 3238s,
(C@C) 1601s, 1510s,
(C–S), 824s. Magnetic moment, eff = 3.02 BM.
m
(C–H) 3053w, 2974w, 2928w,
2868w,
923w,
m(C@N) +
m
m(C–N), 1087s, 1047s,
m
l
2.1.7. [Ni(j
3-O, N3, S- stscN-Ph)(py)] (7)
2.1.3. [Ni(j
3-N4, N3, S-pytscN-Ph)2] (3)
M.p. above 300 °C, Yield, 61%. Anal. Calc. for C26H22N8NiS2: C,
M.p. above 300 °C, Yield, 61%. Anal. Calc. for C26H22N8NiS2: C,
54.81; H, 3.86; N, 19.67. Found: C, 54.65; H, 4.08; N, 19.51%. Main
54.81; H, 3.86; N, 19.67. Found: C, 54.65; H, 4.18; N, 19.51%. Main
IR peaks (KBr, cmÀ1),
m
(N–H) 3264br, (C–H) 3053w, 3014w,
m
IR peaks (KBr, cmÀ1),
m
(N–H) 3263s,
(C@C) 1589s, 1518s, (C–N), 1128s, 1028w,
Magnetic moment, eff = 3.13 BM.
m
(C–H) 3055w, 3022w, 2888w,
2833w,
912s,
m
(C@N) +
m
(C@C) 1602s, 1544s, m(C–N), 1091s, 1022s,
m
(C@N) +
m
m
m(C–S) 894s.
m
(C–S) 839s. 1H NMR (d, CDCl3), d = 8.84 (s, br, 2H, o-
l
H(py)), 8.06 (s, 1H, C2H), 7.77 (t, 1H, p-H(py)), 7.47 (d, 2H, o-
H(Ph)), 7.24 (m, 6H, N1H + m-H(py) p-H + m-H(Ph)), 6.99(t, 1H,
C5H), 6.88(d, 1H, C8H), 6.65(t, 1H, C7H).
2.1.4. [Ni(j
3-O, N3, S-stscN-Me)(PPh3)] (4)
To a solution of H2stscN-Me (0.021 g, 0.100 mmol) in methanol
was added solid Ni(OAc)2 salt (0.025 g, 0.100 mmol) and stirred.
The rust colored precipitates formed during stirring were filtered
and allowed to dry at room temperature. The analytical data sup-
ported the formation of compound of empirical composition,
[Ni(stscN-Me)] {Anal. Calc. for C9H9NiN3OS: C, 40.65; H, 3.39; N,
15.81. Found: C, 40.84; H, 3.23; N, 15.75%}. To a suspension of
[Ni(stscN-Me)] (0.025 g, 0.094 mmol) in CH3CN was added PPh3
(0.025 g, 0.094 mmol), and contents were stirred for 1 h. The clear
solution obtained was allowed to evaporate at room temperature
which yielded red colored crystals. M.p. 180–82 °C, Yield, 57%. Ana-
l. Calc. for C27H24NiN3OPS: C, 61.34; H, 4.54; N, 7.95. Found: C,
2.1.8. [Cu(j
3-O, N3, S-stscN-Me)(py)] (8)
M.p. 244–46 °C, Yield, 62%. Anal. Calc. for C14H14N4CuOS: C,
48.01; H, 4.00; N, 16.00. Found: C, 48.30; H, 4.23; N, 15.96%. Main
IR peaks (KBr, cmÀ1),
m
(N–H) 3229s,
(C@C) 1600s, 1558s,
(C–S) 821s. Magnetic moment, eff = 1.80 BM.
m
(C–H) 3081w, 3018w, 2977w,
2883w,
m(C@N) +
m
m
(C–N), 1070s, 1028s, 912s,
m
l
2.1.9. [Cu(j
3-O, N3, S-stscN-Ph)(py)] (9)
M.p. 212–14 °C, Yield, 58%. Anal. Calc. for C25.66H31.64CuN5O3.66S:
C, 54.57; H, 5.61; N, 12.40. Found: C, 54.46; H, 5.64; N, 12.26%.
Main IR peaks (KBr, cmÀ1),
m
(N–H) 3249s,
(C@C) 1610s, 1533s,
(C–S) 849s. Magnetic moment, eff = 1.82 BM.
m
(C–H) 3045s, 2988w,
61.56; H, 4.39; N, 7.89%. Main I.R peaks (KBr, cmÀ1),
3428s, (C–H) 3070w, 3047w, 2887w, 2885w, (C@N) +
1607s, 1528s, (P–C) 1097s, (C–N), 1024s, 1001s, 916s,
m
m
m
(N–H)
(C@C)
(C–S)
2920w,
946s,
m(C@N) +
m
m(C–N) 1067s, 1022s,
m
m
m
l
m
m
829s. 1H NMR (d, CDCl3), d = 8.34 (d, 1H, C2H), 7.79 (m, 6H, o-H),
7.46 (m, 9H, p-H + m-H), 7.24 (dd, 1H, C5H), 7.06 (t, 1H, C6H),
6.59 (t, 1H, C8H), 6.41 (d, 1H, C7H), 4.74 (d, br, 1H, N1H), 2.90 (d,
2.1.10. 1H NMR spectra of ligands: H2stscN-Me
1H NMR (d, CDCl3), d = 10.95 (s, 1H, OH), 9.61 (s, 1H, N2H), 8.23
(s, 1H, C2H), 7.56 (s, br, N1H), 7.36 (dd, 1H, C5H), 7.26 (t, 1H, C6H),
6.90 (m, 2H, C7H + C8H), 3.12 (d, 3H, CH3) ppm. H2stscN-Et, 1H NMR
(d, CDCl3), d = 10.73 (s, 1H, OH), 9.68 (s, 1H, N2H), 8.18 (s, 1H, C2H),
3H, CH3) ppm. 31P NMR (CDCl3), d = À88.04 ppm.
Dd(dcomplex –
dPPh3) = 25.11 ppm.
Compounds 5–9 were prepared similarly.