motif is achieved by adopting the penta-axial conformation.
Interest surrounds the precise biological function of
Ins(1,2,3)P3 (1), and in future research the fluorescent probe
may be of use to study the behaviour of 1 in cells.
N.R. thanks Morvus Technologies for a CASE studentship.
We thank ESPRC for award of a diffractometer.
Notes and references
z Crystal data for 3ꢃCDCl3: C47H38O8SiꢃCDCl3, M = 880.25, triclinic,
ꢀ
space group P1, a = 11.1679(9), b = 11.6838(9), c = 16.9249(13) A,
a = 72.420(2), b = 81.387(2), g = 87.634(2)1, V = 2081.5(3) A3, Z =
2, T = 150 K, Z = 2, D = 1.404 (calc.), m = 0.306 mmꢁ1. 18 993
reflections measured, 9307 unique (Rint = 0.0075); after final refine-
ment R = 0.041 for 6716 reflections with Fo 4 4s(Fo), wR(F2) =
0.114 for all 9307 reflections.
y For 2, dH (500 MHz, D2O, water supp.): 9.12 (2H, d, J 9.4 Hz, Pyr),
8.90 (2H, d, J 7.6 Hz, Pyr), 8.76–8.25 (14H, m, Pyr), 6.04 (2H, t, JAA
9.9 Hz, H-4/6), 5.34 (1H, br d, JPH 10.1 Hz, H-2), 4.91 (1H, dt E br q,
JAA E JPH 8.7 Hz, H-5), 4.79–4.68 (2H, br t, JAA E JPH 7.2 Hz,
H-1/3). dP (121 MHz, D2O): 1.79 (1P), ꢁ0.09 (2P), ꢁ1.08 (1P). IR
data: nmax/cmꢁ1 1703 (CQO); 1257 (m), 1226 (m), 1195 (m), (PQO);
1082 (s), 1048 (s), 1018 (s) (P–O–Bn).
Fig. 2 Emission spectra of 4,6-bispyrenoyl Ins(1,2,3,5)P4 (2) in the
absence (- - -) and presence (ꢃ ꢃ ꢃ) of Fe3+ (1 equiv.) and the presence
(—) of Ga3+ (1 equiv.). Spectra were recorded at a concentration of
1 mM in methanol at 20 1C. Excitation and emission slit widths were
3 nm (absence of metal) and 5 nm (presence of metal).
(Fig. 2). The excimer peak was observed at 515 nm with an
intensity more than double that observed with Fe3+. This
evidence supports the general principle that Fe3+ binds to the
penta-axial conformation.10
1 (a) C. J. Barker, P. J. French, A. J. Moore, T. Nilsson, P. O.
Berggren, C. M. Bunce, C. J. Kirk and R. H. Michell, Biochem. J.,
1995, 306, 557–564; (b) F. M. McConnell, S. B. Shears, P. J. L.
Lane and M. S. Scheibel, Biochem. J., 1992, 284, 447–455.
2 I. D. Spiers, C. J. Barker, S.-K. Chung, Y.-T. Chang, S. Freeman,
J. M. Gardiner, P. H. Hirst, P. A. Lambert, R. H. Michell and D.
R. Poyner, Carbohydr. Res., 1996, 282, 81–99.
3 I. D. Spiers, S. Freeman, D. R. Poyner and C. H. Schwalbe,
Tetrahedron Lett., 1995, 36, 2125–2128.
4 A. J. Letcher, M. J. Schell and R. F. Irvine, Biochem. J., 2008,
DOI: 10.1042/BJ20081417.
To obtain detailed structural information, calculations on high-
spin Fe3+ complexes of penta-axial hexamethyl phosphoester at
the UB3LYP/6-31+G* level were performed. Conforming to the
1 : 1 Ins(1,2,3)P3–Fe3+ stoichiometry suggested by potentiometric
titrations5 and the absence of water within the coordination
sphere implied by azide competition experiments,10 we obtained
after conformational searching two essentially isoenergetic
Fe3+-coordinating penta-axial geometries, 7A and 7B (Fig. 3).
Distinct from the structure suggested by Phillippy and Graf,10 for
which we were unable to detect a stable minimum, both 7A and
7B involve inositol phosphoester oxygens as well as terminal
oxygens in the coordination of Fe3+. Similar Fe3+-coordination
is predicted for hexa-anionic Ins(1,2,3)P3. Structure 7A adopts a
distorted tetrahedral coordination involving one phosphoester and
three terminal oxygens in the coordination of Fe3+. Structure 7B,
which is 0.1 kcal molꢁ1 higher in energy than 7A, adopts a
distorted trigonal bipyramidal coordination around Fe3+ invol-
ving participation of two phosphoester and three terminal
oxygens. Further experimental studies are required to unambi-
guously establish the structure of the Ins(1,2,3)P3–Fe3+ complex.
This study provides evidence that Fe3+ binding to
myo-inositol phosphates possessing the 1,2,3-trisphosphate
5 N. Veiga, J. Torres, D. Mansell, S. Freeman, S. Domı
Barker, A. Dıaz and C. Kremer, J. Biol. Inorg. Chem., DOI:
10.1007/s00775-008-0423-2.
´
nguez, C. J.
´
6 C. J. Barker, J. Wright, P. J. Hughes, C. J. Kirk and R. H. Michell,
Biochem. J., 2004, 380, 465–473.
7 J. Torres, S. Domı
Irvine, A. Dıaz and C. Kremer, J. Inorg. Biochem., 2005, 99,
828–840.
nguez, M. F. Cerda, G. Obal, A. Mederos, R. F.
´ ´
´
8 I. D. Spiers, S. Freeman and C. H. Schwalbe, J. Chem. Soc., Chem.
Commun., 1995, 2219–2220.
9 M. J. Frisch and co-workers, Gaussian 03, 2004. See ESI for full
citationw.
10 B. Q. Phillippy and E. Graf, Free Radical Biol. Med., 1997, 22,
939–946.
11 M. Kadirvel, E. V. Bichenkova, A. D’Emanuele and S. Freeman,
Chem. Lett., 2006, 35, 868–869.
12 M. Kadirvel, B. Arsic, S. Freeman and E. V. Bichenkova, Org.
Biomol. Chem., 2008, 6, 1966–1972.
13 A. Hosoda, Y. Ozaki, A. Kashiwada, M. Mutoh, K. Wakabayashi,
K. Mizuno, E. Nomura and H. Taniguchi, Bioorg. Med. Chem.,
2002, 10, 1189–1196.
14 R. Kahn, R. Fourme, D. Andre and M. Renaud, Acta Crystallogr.,
Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, 29, 131–138.
15 T.-H. Kim and A. B. Holmes, J. Korean Chem. Soc., 2006, 50,
129–136.
16 C. K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge
National Laboratory, Oak Ridge, TN, USA, 1976.
17 B. Bodenant, F. Fages and M. H. Delville, J. Am. Chem. Soc.,
1998, 120, 7511–7519.
18 F. Fages, B. Bodenant and T. Weil, J. Org. Chem., 1996, 61,
3956–3961.
19 F. Fages, S. Leroy, T. Soujanya and J.-E. Sohna Sohna, Pure Appl.
Chem., 2001, 73, 411–414.
20 B. A. Borgias, S. J. Barclay and K. N. Raymond, J. Coord. Chem.,
1986, 15, 109–123.
Fig. 3 Optimal UB3LYP/6-31+G* geometries (A) of the hexa-
methyl phosphoester of Ins(1,2,3)P3–Fe3+(1) in the high-spin state.
ꢄc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5161–5163 | 5163