7152
K. C. Majumdar et al. / Tetrahedron Letters 49 (2008) 7149–7152
In this DPA homologous series including both short- and long-
chained members, two smectic phases are evident: smectic Ad
and smectic A2 with temperatures of approximately 50 and
30 °C, respectively. Compounds 7c and 7d exhibit an unknown
phase before the smectic A2 phase on heating from solid or cooling
from the smectic A2 phase. From molecular models, it has been ob-
served that the molecule deviates from the usual bent shape and
approaches a rod-like configuration with symmetrical chains fac-
ing opposite directions. Initially, we assumed that the molecules
should have a bent structure and must give banana phases; how-
ever, X-ray profiles of these compounds led to a remarkable obser-
vation in which only one small angle diffraction peak must be for
the smectic fluctuation and the d-value larger than the molecular
length indicates Ad and A2 phases rather than a banana phase.
We conclude that this is
a remarkable observation as DPA
possesses numerous properties and also exhibits a smectic liquid
crystalline phase.
Acknowledgments
Figure 3. XRD diagram of 7a.
We thank the DST (New Delhi) for financial assistance and the
Material Science Department, IACS, Kolkata for HRXRD. Three of
us (B.C., S.C., and R.K.S.) are grateful to the CSIR (New Delhi) for
the fellowships.
References and notes
1. Niori, T.; Sekine, T.; Watanabe, J.; Furukava, T.; Takezoe, H. J. Mater. Chem. 1996,
6, 1231.
2. Shen, D.; Diele, S.; Wirth, I.; Tschierske, C. Chem. Commun. 1998, 2573.
3. Shen, D.; Diele, S.; Pelzl, G.; Wirth, I.; Tschierske, C. J. Mater. Chem. 1999, 9, 661.
4. Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Korblova, E.; Walba, D. M.
Science 1997, 278, 1924.
5. Pelzl, G.; Diele, S.; Weissflog, W. Adv. Mater. 1999, 11, 707.
6. Rouillon, J. C.; Marcerou, J. P.; Laguerre, M.; Nguyen, H. T.; Achard, M. F. J. Mater.
Chem. 2001, 11, 2946.
7. Olson, D. A.; Veun, M.; Cady, A.; D’Agostino, M. V.; Johnson, P. M.; Nguyen, H. T.;
Chien, L. C.; Huang, C. C. Phys. Rev. E 2001, 63, 41702.
8. Nadasi, H.; Weissflog, W.; Eremin, A.; Pelzl, G.; Diele, S.; Das, B.; Grande, S. J.
Mater. Chem. 2002, 12, 1316.
9. Bedel, G.; Rouillon, J. C.; Maroerou, J. P.; Laguerre, M.; Nguyen, H. T.; Achard, M.
F. Liq. Cryst. 2001, 28, 1285.
Figure 4. Conoscopic interference pattern observed for 7a at 140 °C.
10. Sadashiva, B. K.; Reddy, R. A.; Pratibha, R.; Madhusudana, N. V. J. Mater. Chem.
2002, 12, 943.
11. Reddy, R. A.; Sadashiva, B. K. J. Mater. Chem. 2002, 12, 2627.
12. Shirota, Y. J. Mater. Chem. 2000, 10, 1.
13. Shirota, Y. J. Mater. Chem. 2005, 15, 75.
14. Cho, J.-S.; Kimoto, A.; Higuchi, M.; Yamamoto, K. Macromol. Chem. Phys. 2006, 6,
635.
15. Koene, B. E.; Loy, D. E.; Thompson, M. E. Chem. Mater. 1998, 10, 2235.
16. Typical procedure for the synthesis of compound 7a: A mixture of compound 3
(100 mg, 0.418 mmol) and 4-aminophenyl-4-(octadecyloxy)benzoate (403 mg,
0.836 mmol) was refluxed in absolute ethanol in the presence of a catalytic
amount of glacial acetic acid for 2 h. The Schiff base 7a was precipitated out
from the hot reaction mixture. It was collected, washed with hot ethanol
repeatedly, and dried in vacuum.
Compound 7a: Yield 98%; IR (KBr): 2921, 1730, 1600, 1507 cmꢀ1 1H NMR
;
(400 MHz, CDCl3): dH 0.86–1.86 (m, 70H), 3.46 (s, 3H), 4.02 (t, 4H, J = 6.4 Hz),
6.94 (d, 4H, J = 8.8 Hz), 7.14 (d, 4H, J = 8.4 Hz), 7.19–7.23 (m, 8H), 7.82 (d, 4H,
J = 8.4 Hz), 8.11 (d, 4H, J = 8.8 Hz), 8.39 (s, 2H). 13C NMR (125 MHz, CDCl3): dC
14.5, 23.1, 26.4, 29.5, 29.7, 29.8, 29.9, 29.9, 30.0, 30.1, 32.3, 40.5, 68.7, 114.7,
120.7, 121.9, 122.2, 122.8, 130.3, 130.6, 132.6, 149.4, 150.2, 151.0, 159.8, 163.9,
165.4. Anal. Calcd for C77H103N3O6: C, 79.27; H, 8.90, N, 3.60. Found: C, 79.57;
H, 8.99; N, 3.27.
Figure 5. Conoscopic interference pattern observed for 7a at 196 °C.
17. Ostrovskii, B. I.; Pavluchenku, A. I.; Petrov, V. F.; Saidachmetov, M. A. Liq. Cryst.
1989, 5, 513.
18. de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Oxford Press, 1993.
19. Madhusudana, N. V.; Chandrasekhar, S. Pramana Suppl. 1975, 1, 57.
20. Leadbetter, A. J.; Prost, J. C.; Gsughan, J. P.; Gray, G. W.; Mosley, A. J. Phys. 1979,
40, 375.
21. Majumdar, K. C.; Pal, N.; Debnath, P.; Rao, N. V. S. Tetrahedron Lett. 2007, 48,
6330.
linkage resulted in similar non-mesophase behavior. At the present
time, we have studied a disubstituted N-MeDPA core instead of the
TPA core and notably, all the homologous compounds exhibit a
SmA phase, which show transitions from the partial bilayer SmAd
phase to the bilayer SmA2 phase as the temperature is lowered.
22. Wang, Y.-J.; Sheu, H.-S.; Lai, C. K. Tetrahedron 2007, 63, 1695.