A R T I C L E S
Pandithavidana et al.
Scheme 1
Here we report the synthesis and photochemistry of cyclo-
propenone precursors 1, as well as theoretical and experimental
studies of the reactivity of nine-membered ring enediyne 2
(Scheme 1).
Results and Discussion
Synthesis of Cyclopropenone 1. A number of synthetic
methods are available for the preparation of the cyclopropenone
group, which is the key component of the photoactivatable
enediyne precursor 1.22 Few of them, however, are compatible
with a highly functionalized macrocycle 1, which forced us to
introduce cyclopropenone functionality on early stages of the
synthesis.23 The addition of difluorocarbene, which was gener-
ated by the thermolysis of trimethylsilyl fluorosulfonyldifluo-
roacetate (FO2SCF2CO2SiMe3, TFDA),24 to the acetylene 4,
produced 1,1-difluorocyclopropene. The latter was hydrolyzed
without isolation on wet silica gel to give cyclopropenone 5
(Scheme 2).23 Introducing cyclopropenone moiety early in a
multistep synthesis is difficult since this functionality is very
susceptible to a nucleophilic attack, which usually results in
ring opening.25 Complexation with Lewis acids, on the other
hand, produces relatively unreactive 2π-aromatic oxycyclopro-
penium cation. Masking cyclopropenone moiety as 2,2-dimethyl-
1,3-propanediyl acetal 6 allows us to avoid these complications
and broaden the range of reagents and reaction conditions that
can be employed for the preparation of target compound
(Scheme 2). It has to be noted, however, that cyclopropenone
acetals are extremely susceptible to acid hydrolysis. They have
life-times of only few milliseconds in an aqueous solution.26
Our group explores an alternative strategy for the phototrig-
gering of the cycloaromatization reaction: the in situ generation
of an activated enediyne system.15 Ideally, a photoswitchable
analogue of natural enediyne antibiotics should be stable in the
dark but undergo rapid and reversible cyclization to p-benzyne
after irradiation. We have recently shown that masking one of
the triple bonds in 10-membered cyclic enediynes with cyclo-
propenone moiety produces thermally stable enediyne precur-
sors. While photolysis of cyclopropenone precursors under
single-16 or two-photon excitation17 conditions results in efficient
generation of corresponding enediynes, the cycloaromatization
of the latter was not fast enough (τ40°C > 16 h) to achieve
temporal and spatial resolution of p-benzyne generation in
biological systems. To enhance the rate of Bergman cyclization
of photoswitchable enediynes, we decided to design a nine-
membered ring cyclopropenone-containing enediyne precursor
(Scheme 1). Highly strained nine-membered enediynes are
predicted to undergo very facile cycloaromatization under
ambient conditions.18 In fact, the only known monocyclic nine-
membered enediyne with measurable lifetime, 3-chloro-3-
cyclononene-1,5-diyne (τ40°C ≈ 8 min), is stabilized by chlorine
substituent in the vinylic position.19 Natural antibiotic C-1027
and its analogues, which possess a bicyclic nine-membered ring
enediyne core, are also extremely labile.3,20 To achieve revers-
ibility of the Bergman cyclization we decided to exploit the
fact that hydrogen abstraction often becomes a partially rate-
limiting step in the Bergman cyclization of benzannulated
enediynes.21
The second acetylenic substituent was introduced using
conventional Stille coupling condtions (7, Scheme 2). Simul-
taneous saponification of the acetate and removal of the TMS
group followed by iodination27 and Dess-Martin oxidation28
gave rise to the iodoaldehyde 10. Cyclization of the latter under
(21) (a) Zeidan, T. A.; Manoharan, M.; Alabugin, I. V. J. Org. Chem. 2006,
71, 954. (b) Stahl, F.; Moran, D.; Schleyer, P. R.; Prall, M.; Schreiner,
P. R. J. Org. Chem. 2002, 67, 1453. (c) Koseki, S.; Fujimura, Y.;
Hirama, M. J. Phys. Chem. A. 1999, 103, 7672. (d) Semmelhack,
M. F.; Neu, T.; Foubelo, F. J. Org. Chem. 1994, 59, 5038. (e) Boger,
D. L.; Zhou, J. J. Org. Chem. 1993, 58, 3018. (f) Semmelhack, M. F.;
Neu, T.; Foubelo, F. Tetrahedron Lett. 1992, 33, 3277.
(14) (a) Nicolaou, K. C.; Dai, W.-M.; Wendeborn, S. V.; Smith, A. L.;
Torisawa, Y.; Maligres, P.; Hwang, C.-K Angew. Chem., Int. Ed. Engl.
1991, 30, 1032. (b) Nicolaou, K. C.; Dai, W.-M. J. Am. Chem. Soc.
1992, 114, 8908. (c) Wender, P. A.; Zercher, C. K.; Beckham, S.;
Haubold, E.-M. J. Org. Chem. 1993, 58, 5867. (d) Wender, P. A.;
Beckham, S.; O’Leary, J. G. Synthesis 1994, 1278. (e) Basak, A.;
Bdour, H. M.; Shain, J. C.; Mandal, S.; Rudra, K. R.; Nag, S. Bioorg.
Med. Chem. Lett. 2000, 10, 1321.
(22) (a) Breslow, R.; Posner, J.; Krebs, A. J. Am. Chem. Soc. 1963, 85,
234. (b) Ko¨brich, G.; Flory, K.; Fischer, R. H. Chem. Ber. 1966, 99,
1793. (c) Chikos, J. C.; Patton, E.; West, R. J. Org. Chem. 1974, 39,
1647. (d) Wadsworth, D. H.; Donatelli, B. A. Synthesis 1981, 285.
(e) Musigmann, K.; Mayr, H. Tetrahedron Lett. 1987, 28, 4517. (f)
Weinder, C. H.; Wadsworth, D. H.; Knop, C. S.; Oyefesso, A. I.; Hafer,
B. H.; Hartman, R. J.; Mehlenbacher, R. C.; Hogan, S. C. J. Org.
Chem. 1994, 59, 4319. (g) Chiang, Y.; Grant, A. S.; Kresge, A. J.;
Paine, S. W. J. Am. Chem. Soc. 1996, 118, 4366. (h) Gleiter, R.;
Merger, M.; Altereuther, A.; Irngartinger, R. J. Org. Chem. 1996, 61,
1946. (i) Netland, K. A.; Gundersen, L.-L.; Rise, F. Synth. Commun.
2000, 30, 1767. (j) Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2003,
68, 7833.
(15) Poloukhtine, A.; Karpov, G.; Popik, V. V. Curr. Trends Med. Chem.
2008, 8, 460.
(16) (a) Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2005, 70, 1297. (b)
Poloukhtine, A.; Popik, V. V. Chem. Comm. 2005, 617.
(17) Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2006, 71, 7417.
(18) (a) Nicolaou, K. C.; Ogawa, Y.; Zuccarello, G.; Schweiger, E. J.;
Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866. (b) Snyder, J. P.
J. Am. Chem. Soc. 1990, 112, 5367. (c) Magnus, P.; Fortt, S.; Pitterna,
T.; Snyder, J. P. J. Am. Chem. Soc. 1990, 112, 4986. (d) Jones, G. B.;
Warner, P. M. J. Am. Chem. Soc. 2001, 123, 2134. (e) Gaffney, S. M.;
Capitani, J. F.; Castaldo, L.; Mitra, A. Int. J. Qant. Chem. 2003, 95,
706. (f) Chen, W.-C.; Zou, J.-W.; Yu, C.-H. J. Org. Chem. 2003, 68,
3663. (g) Alabugin, I. V.; Manoharan, M. J. Phys. Chem. A 2003,
107, 3363.
(23) See the Supporting Information file for details.
(24) (a) Cheng, Z.-L.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Eur. J. Org. Chem.
2006, 5581. (b) Cheng, Z.-L.; Chen, Q.-Y. Chin. J. Chem. 2006, 24,
1219.
(25) (a) Potts, K. T.; Baum, J. S Chem. ReV. 1974, 74, 189. (b) Halton, B.;
Banwell, M. G. In The Chemistry of Cyclopropyl Group; Rappoport,
Z., Ed.; Wiley: New York, 1987, 1300; (c) Ciabattoni, J.; Nathan,
E. C. J. Am. Chem. Soc. 1969, 91, 4766. (d) Dehmlow, E. V.; Neuhaus,
R.; Schell, H. G. Chem. Ber. 1988, 121, 569. (e) Dehmlow, S. S.;
Dehmlow, E. V. Z. Naturforsch. B 1975, 30b, 404. (f) Dehmlow, E. V.
Leib. Ann. 1969, 729, 64.
(19) Jones, G. B.; Plourde, G. W. Org. Lett. 2000, 2, 1757.
(20) (a) Yoshida, K.; Minami, Y.; Azuma, R.; Saeki, M.; Otani, T.
Tetrahedron Lett. 1993, 34, 2637. (b) Xu, Y. J.; Zhen, Y. S.; Goldberg,
I. H. Biochemistry 1994, 33, 5947. (c) Iida, K.; Hirama, M. J.Am.
Chem. Soc. 1995, 117, 8875. (d) Usuki, T.; Mita, T.; Lear, M. J.;
Das, P.; Yoshimura, F.; Inoue, M.; Hirama, M.; Akiyama, K.; Tero-
Kubota, S. Angew. Chem., Int. Ed. 2004, 43, 5249. (e) Inoue, M.;
Ohashi, I.; Kawaguchi, T.; Hirama, M. Angew. Chem., Int. Ed. 2008,
47, 1777.
(26) McClelland, R. A.; Ahmad, M. J. Am. Chem. Soc. 1978, 100, 7027.
(27) Crevisy, C.; Beau, J.-M. Tetrahedron Lett. 1991, 32, 3171.
(28) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156.
9
352 J. AM. CHEM. SOC. VOL. 131, NO. 1, 2009