10.1002/anie.201904520
Angewandte Chemie International Edition
COMMUNICATION
Chem. 2012, 77, 7344; e) C. Liu, F. Yang, T. Wang, Chin. J. Chem. 2014,
32, 387; f) Q. Yang, Y. Zhou, J. Chen, X. He, J. Xu, F. Y. Kwong, B. Fan,
Eur. J. Org. Chem. 2015, 5330; g) Z. Yang, R. K. Kumar, P. Liao, Z. Liu,
X. Li, X. Bi, Chem. Commun. 2016, 52, 5936.
[4]
a) J. A. Dabrowski, F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133,
4778; b) H. Li, A. Alexakis, Angew. Chem. 2012, 124, 1079; Angew.
Chem. Int. Ed. 2012, 51, 1055; c) J. Y. Hamilton, D. Sarlah, E. M. Carreira,
Angew. Chem. 2013, 125, 7680; Angew. Chem. Int. Ed. 2013, 52, 7532;
d) Y. Makida, Y. Takayama, H. Ohmiya, M. Sawamura, Angew. Chem.
2013, 125, 5458; Angew. Chem. Int. Ed. 2013, 52, 5350; e) A. Harada,
Y. Makida, T. Sato, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2014,
136, 13932; f) C. P. Grugel, B. Breit, Org. Lett. 2018, 20, 1066.
a) G. W. Kabalka, Z. Wu, Y. Ju, Org. Lett. 2004, 6, 3929; b) Y. Nishimoto,
M. Kajioka, T. Saito, M. Yasuda, A. Baba, Chem. Commun. 2008, 6396;
c) M.-L. Yao, T. R. Quick, Z. Wu, M. P. Quinn, G. W. Kabalka, Org. Lett.
2009, 11, 2647; d) S. Biswas, S. Maiti, U. Jana, Eur. J. Org. Chem. 2009,
2354; e) V. J. Meyer, M. Niggemann, Eur. J. Org. Chem. 2011, 3671; f)
H.-L. Yue, W. Wei, M.-M. Li, Y.-R. Yang, J.-X. Ji, Adv. Synth. Catal. 2011,
353, 3139; g) S. Peng, L. Wang, J. Wang, Org. Biomol. Chem. 2012, 10,
225; h) G.-B. Huang, X. Wang, Y.-M. Pan, H.-S. Wang, G.-Y. Yao, Y.
Zhang, J. Org. Chem. 2013, 78, 2742; i) F. Han, L. Yang, Z. Li, Y. Zhao,
C. Xia, Adv. Synth. Catal. 2014, 356, 2506; j) D. Leboeuf, M. Presset, B.
Michelet, C. Bour, S. Bezzenine-Lafoll|e, V. Gandon, Chem. Eur. J. 2015,
21, 11001; k) J. R. Cabrero-Antonino, M. Tejeda-Serrano, M. Quesada,
J. A. Vidal-Moya, A. Leyva-Pérez, A. Corma, Chem. Sci. 2017, 8, 689; l)
S. Yaragorla, R. Dada, A. Pareek, Chemistry Select 2018, 3, 495; m) K.
Čebular, S. Stavber, Pure Appl. Chem. 2018; 90, 377.
[5]
Figure 1. Proposed catalytic cycle and transition state models.
An organocatalytic asymmetric synthesis of 1,4-enynes has
been realized. In this process, readily available propargyl alcohols
bearing a hydrogen bond donor and trialkenylboroxines can be
employed and a highly acidic chiral N-triflyl phosphoramide was
found to be the optimal Brønsted acid catalyst. This asymmetric
alkenylation of propargyl alcohols with trialkenylboroxines offers
an alternative approach to the asymmetric synthesis of 1,4-
enynes, and will probably find application in the synthesis of a
range of chiral compounds having alkynyl, alkenyl or alkyl carbon
chains.
[6]
[7]
a) B. St. Onge, J. R. Green, Synlett 2017, 28, 2923; b) M. Ueda, D.
Nakakoji, T. Morisaki, I. Ryu, Eur. J. Org. Chem. 2017, 7040.
For related alkenylation and alkylation of alcohols or their derivatives with
boron compounds, see; a) Y. Kobayashi, Y. Tokoro, K. Watatani, Eur. J.
Org. Chem. 2000, 3825; b) G. W. Kabalka, M.-L. Yao, S. Borella, Org.
Lett. 2006, 8, 879; c) Y. M. A. Yamada, S. M. Sarkar, Y. Uozumi, J. Am.
Chem. Soc. 2012, 134, 3190; d) Y. Luan, S. E. Schaus, J. Am. Chem.
Soc. 2012, 134, 19965; e) J. Y. Hamilton, D. Sarlah, E. M. Carreira, J.
Am. Chem. Soc. 2013, 135, 994; f) H.-B. Wu, X.-T. Ma, S.-K. Tian, Chem.
Commun. 2014, 50, 219; g) K. M. Fisher, Y. Bolshan, J. Org. Chem. 2015,
80, 12676; h) C. Li, Y. Zhang, Q. Sun, T. Gu, H. Peng, W. Tang, J. Am.
Chem. Soc. 2016, 138, 10774; i) S. Liu, X. Zeng, G. B. Hammond, B. Xu,
Adv. Synth. Catal. 2018, 360, 3667; j) D. Tian, C. Li, G. Gu, H. Peng, X.
Zhang, W. Tang, Angew. Chem. 2018, 130, 7294; Angew. Chem. Int. Ed.
2018, 57, 7176.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers
JP17H06450, JP26220803 and JP18H01975.
[8]
[9]
a) C. L. Cioffi, W. T. Spencer, J. J. Richards, R. J. Herr, J. Org Chem.
2004, 69, 2210; b) A. L. Korich; P. M. Iovine, Dalton Trans. 2010, 39,
1423.
Keywords: organocatalysis • asymmetric catalysis • Brønsted
a) D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626; b)
P. Jiao, D. Nakashima, H. Yamamoto, Angew. Chem. 2008, 1200, 2445;
Angew. Chem. Int. Ed. 2008, 47, 2411; c) A. Jolit, C. F. Dickinson, K.
Kitamura, P. M. Walleser, G. P. A. Yap, M. A. Tius, Eur. J. Org. Chem.
2017, 6067; d) N. Li, D.-F. Chen, P.-S. Wang, Z.-Y. Han, L.-Z. Gong,
Synthesis 2014, 46, 1355.
acids • alkenes • alkynes
[1]
[2]
For selected examples as synthetic intermediates in total synthesis, see:
a) M. Jacobson, R. E. Redfern, W. A. Jones, M. H. Aldridge, Science
1970, 170, 542; b) G. Stork, M. Isobe, J. Am. Chem. Soc. 1975, 97, 4745;
c) K. Iida, M. Hirama, J. Am. Chem. Soc. 1994, 116, 10310; d) V.
Hickmann, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2010, 132,
11042; e) R. Bajpai, D. P. Curran, J. Am. Chem. Soc. 2011, 133, 20435.
For selected examples on transformations of 1,4-enynes, see: a) T. P.
Heffron, T. F. Jamison, Org. Lett. 2003, 5, 2339; b) T. P. Heffron, J. D.
Trenkle, T. F. Jamison, Tetrahedron 2003, 59, 8913; c) X. Shi, D. J. Gorin,
F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802; d) B. A. Bhanu Prasad,
F. K. Yoshimoto, R. Sarpong, J. Am. Chem. Soc. 2005, 127, 12468; e)
A. Buzas, F. Gagosz, J. Am. Chem. Soc. 2006, 128, 12614; f) D. Vasu,
A. Das, R.-S. Liu, Chem. Commun. 2010, 46, 4115; g) T. Sato, T. Onuma,
I. Nakamura, M. Terada, Org. Lett. 2011, 13, 4992.
[10] The reaction of boroxines having an alkyl group at the alkenyl terminus
and triphenylboroxine resulted in no reaction.
[11] Two oxygen atoms of chiral phosphoramide catalysts are engaged in the
intramolecular SN2’ cyclization, see: M. Shimizu, J. Kikuchi, A. Kondoh,
M. Terada, Chem. Sci. 2018, 9, 5747.
[12] For recent examples of chiral Brønsted acid-catalyzed reactions via para-
quinone methide-type intermediates, see: a) C. Yue, F. Na, X. Fang, Y.
Cao, J. C. Antilla, Angew. Chem. 2018, 130, 11170; Angew. Chem. Int.
Ed. 2018, 57, 11004; b) X.-L. Jiang, S.-F. Wu, J.-R. Wang, G.-J. Mei, F.
Shi, Adv. Synth. Catal. 2018, 360, 4225; c) Z.-P. Zhang, K.-X. Xie, C.
Yang, M. Li, X. Li, J. Org. Chem. 2018, 83, 364 and references cited
therein
[3]
For selected examples on synthesis of 1,4-enynes, see; a) C. A. Correia,
C.-J. Li, Adv. Synth. Catal. 2010, 352, 1446; b) Q. Wang, Y. Kobayashi,
Tetrahedron Lett. 2010, 51, 5592; c) K. Ren, P. Li, L. Wang, X. Zhang,
Tetrahedron 2011, 67, 2753; d) P. Trillo, A. Baeza, C. Nájera, J. Org.
[13] The in-situ generated boronic acid might be the actual nucleophile, since
the product yield decreased without loss of enantioselectivity in the
This article is protected by copyright. All rights reserved.