compounds,6,7 we became interested in developing novel and
efficient methods to construct the new 1,2-dihydroisoquinoline
or isoquinoline-based structures, with a hope of finding more
active hits or leads for our particular biological assays. Herein,
we would like to disclose our recent efforts toward the synthesis
of isoquinoline-based structures via tandem electrophilic cy-
clization-[3+2] cycloaddition-rearrangement reactions of
2-alkynylbenzaldoximes with DMAD. The products could be
further elaborated via transition metal catalyzed cross-coupling
reactions.
Tandem Electrophilic Cyclization-[3+2]
Cycloaddition-Rearrangement Reactions of
2-Alkynylbenzaldoxime, DMAD, and Br2
Qiuping Ding,† Zhiyong Wang,† and Jie Wu*,†,‡
Department of Chemistry, Fudan UniVersity,
220 Handan Road, Shanghai 200433, China, and State Key
Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences,
354 Fenglin Road, Shanghai 200032, China
The electrophilic cyclization of heteroatomic nucleophiles
such as oxygen, nitrogen, sulfur, and phosphorus with tethered
(3) For selected examples, see: (a) Bentley, K. W. The Isoquinoline Alkaloids;
Harwood Academic: Amsterdam, The Netherlands, 1998; Vol. 1. (b) Trotter,
B. W.; Nanda, K. K.; Kett, N. R.; Regan, C. P.; Lynch, J. J.; Stump, G. L.;
Kiss, L.; Wang, J.; Spencer, R. H.; Kane, S. A.; White, R. B.; Zhang, R.;
Anderson, K. D.; Liverton, N. J.; McIntyre, C. J.; Beshore, D. C.; Hartman,
G. D.; Dinsmore, C. J. J. Med. Chem. 2006, 49, 6954. (c) Ramesh, P.; Reddy,
N. S.; Venkateswarlu, Y. J. Nat. Prod. 1999, 62, 780. (d) Oi, S.; Ikedou, K.;
Takeuchi, K.; Ogino, M.; Banno, Y.; Tawada, H.; Yamane, T. PCT Int. Appl.
2002, 600. pp (WO 2002062764 A1). (e) Kaneda, T.; Takeuchi, Y.; Matsui, H.;
Shimizu, K.; Urakawa, N.; Nakajyo, S. J. Pharmacol. Sci. 2005, 98, 275. (f)
Mikami, Y.; Yokoyama, K.; Tabeta, H.; Nakagaki, K.; Arai, T. J. Pharm. Dyn.
1981, 4, 282. (g) Marchand, C.; Antony, S.; Kohn, K. W.; Cushman, M.;
Ioanoviciu, A.; Staker, B. L.; Burgin, A. B.; Stewart, L.; Pommier, Y. Mol.
Cancer Ther. 2006, 5, 287. (h) Pettit, G. R.; Gaddamidi, V.; Herald, D. L.; Singh,
S. B.; Cragg, G. M.; Schmidt, J. M.; Boettner, F. E.; Williams, M.; Sagawa, Y.
J. Nat. Prod. 1986, 49, 995.
(4) (a) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org.
Chem. 2007, 72, 4462, and references cited therein. (b) Asao, N.; Yudha S, S.;
Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005, 44, 5526. (c) Yanada,
R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3822.
(d) Asao, N.; Iso, K.; Yudha, S. S. Org. Lett. 2006, 8, 4149. (e) Mori, S.;
Uerdingen, M.; Krause, N.; Morokuma, K. Angew. Chem., Int. Ed. 2005, 44,
4715. (f) Asao, N.; Chan, C. S.; Takahashi, K.; Yamamoto, Y. Tetrahedron
2005, 61, 11322. (g) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron
Lett. 2004, 45, 7339. (h) Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew.
Chem., Int. Ed. 2003, 42, 4257. (i) Yavari, I.; Ghazanfarpour-Darjani, M.;
Sabbaghan, M.; Hossaini, Z. Tetrahedron Lett. 2007, 48, 3749. (j) Shaabani,
A.; Soleimani, E.; Khavasi, H. R. Tetrahedron Lett. 2007, 48, 4743. (k) Wang,
G.-W.; Li, J.-X. Org. Biomol. Chem. 2006, 4, 4063. (l) Diaz, J. L.; Miguel, M.;
Lavilla, R. J. Org. Chem. 2004, 69, 3550.
(5) (a) Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 980. (b) Dai, G.;
Larock, R. C. J. Org. Chem. 2003, 68, 920. (c) Dai, G.; Larock, R. C. J. Org.
Chem. 2002, 67, 7042. (d) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem.
2002, 67, 3437. (e) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86.
(f) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 2001, 66, 8042. (g)
Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553.
(6) (a) Ding, Q.; Wu, J. Org. Lett. 2007, 9, 4959. (b) Gao, K.; Wu, J. J.
Org. Chem. 2007, 72, 8611. (c) Ding, Q.; Ye, Y.; Fan, R.; Wu, J. J. Org. Chem.
2007, 72, 5439. (d) Sun, W.; Ding, Q.; Sun, X.; Fan, R.; Wu, J. J. Comb. Chem.
2007, 9, 690. (e) Ye, Y.; Ding, Q.; Wu, J. Tetrahedron 2008, 64, 1378. (f) Ding,
Q.; Yu, X.; Wu, J. Tetrahedron Lett. 2008, 49, 2752. (g) Ding, Q.; Wang, B.;
Wu, J. Tetrahedron 2007, 63, 12166.
ReceiVed September 18, 2008
Tandem electrophilic cyclization-[3+2] cycloaddition-rear-
rangement reactions of 2-alkynylbenzaldoximes, DMAD, and
bromine are described, which afford the unexpected iso-
quinoline-based azomethine ylides in good to excellent
yields. The products could be further elaborated via pal-
ladium-catalyzed cross-coupling reactions to generate highly
functionalized isoquinoline-based stable azomethine ylides.
Methodology development and library approaches to the
discovery of small-molecule enzyme inhibitors or receptor
ligands are well-established.1 Among the strategies used for the
construction of small molecules, design and synthesis of natural
product-like compounds via tandem reactions have attracted
much attention, and the development of tandem reactions has
been a fertile area in organic synthesis.2 As a privileged
fragment, the 1,2-dihydroisoquinoline (including isoquinoline)
core is found in many natural products and pharmaceuticals that
exhibit remarkable biological activities.3 Typical examples
include papaverine (smooth muscle relaxant),3e saframycin-B
(antitumor agent),3f indenoisoquinoline (topoisomerase
I
inhibitor),3g and narciclasine (antitumor agent).3h Many efforts
continue to be given to the development of new 1,2-dihydroiso-
quinoline or isoquinoline-based structures and new methods for
their constructions.4-6 As part of a program in our laboratory
for the expeditious synthesis of biologically relevant heterocyclic
(7) (a) Ding, Q.; Wu, J. AdV. Synth. Catal. 2008, 350, 1850. (b) Gao, K.;
Wu, J. Org. Lett. 2008, 10, 2251. (c) Ding, Q.; Wu, J. J. Comb. Chem. 2008,
10, 541. (d) Wang, Z.; Fan, R.; Wu, J. AdV. Synth. Catal. 2007, 349, 1943. (e)
Zhang, L.; Wu, J. AdV. Synth. Catal. 2007, 349, 1047.
(8) For selected examples, see: (a) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou,
F.-R.; Huang, S.-H.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2007, 9, 397. (b) Sniady,
A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. (c) Liu, Y.-H.;
Song, F.-J.; Cong, L. Q. J. Org. Chem. 2005, 70, 6999. (d) Peng, A. Y.; Ding,
Y. X. Org. Lett. 2004, 6, 1119. (e) Yue, D.; Yao, T.; Larock, R. C. J. Org.
Chem. 2005, 70, 10292. (f) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org.
Lett. 2001, 3, 651. (g) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (h)
Hessian, K. O.; Flynn, B. L. Org. Lett. 2003, 5, 4377. (i) Arcadi, A.; Cacchi, S.;
Giuseppe, S. D.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409. (j) Huang,
Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437. (k) Yao, T.;
Larock, R. C. J. Org. Chem. 2003, 68, 5936. (l) Yao, T.; Campo, M. A.; Larock,
R. C. Org. Lett. 2004, 6, 2677. (m) Yue, D.; Della, C. N.; Larock, R. C. Org.
Lett. 2004, 6, 1581. (n) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432.
(o) Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio, E.;
Gonzalez, J. M. Chem. Commun. 2005, 2008.
† Fudan University.
‡ Chinese Academy of Sciences.
(1) (a) Walsh, D. P.; Chang, Y.-T. Chem. ReV. 2006, 106, 2476. (b) Arya,
P.; Chou, D. T. H.; Baek, M.-G. Angew. Chem., Int. Ed. 2001, 40, 339. (c)
Schreiber, S. L. Science 2000, 287, 1964.
(2) For selected examples, see: (a) Denmark, S. E.; Thorarensen, A. Chem.
ReV. 1996, 96, 137. (b) Porco, J. A., Jr.; Schoenen, F. J.; Stout, T. J.; Clardy, J.;
Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 7410. (c) Molander, G. A.; Harris,
C. R. J. Am. Chem. Soc. 1996, 118, 4059. (d) Chen, C.; Layton, M. E.; Sheehan,
S. M.; Shair, M. D. J. Am. Chem. Soc. 2000, 122, 7424. (e) Shi, F.; Li, X.; Xia,
Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
10.1021/jo802076k CCC: $40.75
Published on Web 12/04/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 921–924 921