5744
S. Derbré et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5741–5744
II13 and to the disulfide isomerase (MW 57 kDa, pI 4.76), a chaper-
one protein from endoplasmic reticulum.14 Proteins (iii)–(v) could
not be identified as the protein amount was not sufficient. How-
ever their molecular weights around 30 kDa as the ND1-subunit
of mitochondrial complex I is promising.3g
Org. Lett. 2008, 10, 717. and references cited therein; Interestingly, such natural
substances have been found recently in Ampelocissus sp. (Vitaceae): (e) Pettit,
G. R.; Mukku, V. J.; Cragg, G.; Herald, D. L.; Knight, J. C.; Herald, C. L.; Chapuis, J.-
C. J. Nat. Prod. 2008, 71, 130.
2. Eskobar-Khondiker, M.; Höllerhage, M.; Muriel, M.-P.; Champy, P.; Bach, A.;
Depienne, C.; Respondek, G.; Yamada, E. S.; Lannuzel, A.; Yagi, T.; Hirsch, E. C.;
Oertel, W. H.; Jacob, R.; Michel, P. P.; Ruberg, M.; Höglinger, G. U. J. Neurosci.
2007, 27, 7827. and references cited therein.
The ultimate challenge in our approach ideally entailed using
probe 2 for tag-free ABPP, that is, in vivo covalent interactions of
2 with its targets and subsequent labeling of the bio-orthogonal
azide chemical reporter group in vitro on whole proteomes. Unfor-
tunately, an unspecific labeling of proteins by propargylfluorescein
was systematically observed. Possible reasons can be put forward
for this failure and are inherent to acetogenin structures and phys-
icochemical properties. Previously reported successes of this latter
strategy15 dealt with the targeting/identification of soluble cyto-
solic proteins or expressed proteins. In our case, membrane associ-
ated targets and a strong affinity of acetogenins to lipids may
considerably complicate the task making the 28-azide totally
inaccessible for chemical modifications on whole proteome
(Scheme 1).
In conclusion, an acetogenin of the Annonaceae was converted
to activity-based probes for chemical proteomics. But mainly, we
were able to identify new putative targets including mitochondrial
(vi), but also cytosolic (i and ii) and reticulum associated (vii)
enzymes.16 This rules out the ‘complex I dogma’ and opens the
way to major new developments in biology for the comprehension
of both cytotoxicity and neurotoxicity of this class of secondary
metabolites which are found in edible products from the Annona-
ceae and constitute an important public health issue. These results
also validate the particular importance of natural products in the
exploration of proteome.17
3. For recent examples of studies directed towards the understanding of
annonaceaous acetogenins mechanisms of action, see inter alia: (a) Kojima,
N.; Fushimi, T.; Maezaki, N.; Tanaka, T.; Yamori, T. Bioorg. Med. Chem. Lett. 2008,
18, 1637; (b) Maezaki, N.; Urabe, D.; Yano, M.; Tominaga, H.; Morioka, T.;
Kojima, N.; Tanaka, T. Heterocycles 2007, 73, 159; (c) Barachina, I.; Royo, I.;
Baldoni, H. A.; Chahboune, N.; Suvire, F.; DePedro, N.; Zafra-Polo, M. C.; Bermejo,
A.; El Aouad, N.; Cabedo, N.; Saez, J.; Tormo, J. R.; Enriz, R. D.; Cortes, D. Bioorg.
Med. Chem. 2007, 15, 4369; (d) Liu, H.-X.; Huang, G.-R.; Zhang, H.-M.; Wu, J.-R.;
Yao, Z.-J. Bioorg. Med. Chem. Lett. 2007, 15, 3426; (e) Liu, H.-X.; Huang, G.-R.;
Zhang, H.-M.; Jiang, S.; Wu, J.-R.; Yao, Z.-J. ChemBioChem 2007, 8, 172; (f) Fujita,
D.; Murai, M.; Nishioka, T.; Miyoshi, H. Biochemistry 2006, 45, 6581; (g) Murai,
M.; Ishihara, A.; Nishioka, T.; Yagi, T.; Miyoshi, H. Biochemistry 2007, 46, 6409.
4. (a) Derbré, S.; Roué, G.; Poupon, E.; Susin, S. A.; Hocquemiller, R. ChemBioChem
2005, 6, 979; (b) Duval, R. A.; Poupon, E.; Brandt, U.; Hocquemiller, R. BBA
Bioenerg. 2005, 1709, 191; (c) Derbré, S.; Duval, R.; Roué, G.; Garofano, A.;
Poupon, E.; Brandt, U.; Susin, S. A.; Hocquemiller, R. ChemMedChem 2006, 1,
118; (d) Duval, R. A.; Poupon, E.; Romero, V.; Peris, E.; Lewin, G.; Cortes, D.;
Brandt, U.; Hocquemiller, R. Tetrahedron 2006, 62, 6248; (e) Duval, R. A.; Lewin,
G.; Peris, E.; Chahboune, N.; Garofano, A.; Dröse, S.; Cortes, D.; Brandt, U.;
Hocquemiller, R. Biochemistry 2006, 45, 2721; (f) Derbré, S.; Poupon, E.; Gleye,
C.; Hocquemiller, R. J. Nat. Prod. 2007, 70, 304.
5. For recent reviews, see: (a) Evans, M. J.; Cravatt, B. F. Chem. Rev. 2006, 106,
3279; (b) Sadaghiani, A. M.; Verhelst, S. H. L.; Bogyo, M. Curr. Opin. Chem.
Biol. 2007, 11, 20; (c) Salisbury, C. M.; Cravatt, B. F. QSAR Comb. Sci. 2007, 26,
1229; (d) Uttamchandani, M.; Li, J.; Sun, H.; Yao, S. Q. ChemBioChem 2008, 9,
667.
6. For a review on protein-reactive natural products Drahl, C.; Cravatt, B. F.;
Sorensen, E. J. Angew. Chem. Int. Ed. 2005, 44, 5788.
7. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int.
Ed. 2002, 41, 1053; (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057; For a recent review on ‘Click Chemistry’ in medicinal chemistry,
see: (c) Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.;
Genazzani, A. A. Med. Res. Rev. 2008, 28, 278.
Acknowledgement
8. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 18,
1977.
9. See Supporting Information.
We gratefully thank Jean-Christophe Jullian for NMR assistance.
10. Considering that the association 3-proteins is resistant to protein denaturation,
a covalent link can be reasonably assumed between 3 and its targets.
11. Richardson, K. S.; Zundel, W. Mol. Cancer Res. 2005, 3, 645.
12. Frova, C. Biomol. Eng. 2006, 23, 149.
Supplementary data
13. King, A.; Selak, M. A.; Gottlieb, E. Oncogene 2006, 25, 4675.
14. Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z.-Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura,
Y.; Lipton, S. A. Nature 2006, 441, 513.
15. See inter alia: (a) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003,
125, 4686; (b) Evans, M. J.; Saghatelian, A.; Sorensen, E. J.; Cravatt, B. F. Nat.
Biotechnol. 2005, 23, 1303.
Supplementary data associated with this article can be found, in
References and notes
16. The interaction with the known target of acetogenins, that is, mitochondrial
complex I, was not detected in the course of this study. In fact, this
interaction is known to be non-covalent: see among others, Tormo, J. R.;
González, M. C.; Cortes, D.; Estornell, E. Arch. Biochem. Biophys. 1999, 369,
119.
1. For a recent review article, see: (a) Bermejo, A.; Figadère, B.; Zafra-Polo, M.-C.;
Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269; (b) Mc
Laughlin, J. L. J. Nat. Prod. 2008, 71, 1311; For recent synthetic efforts, see inter
alia: (c) Huh, C. W.; Roush, W. R. Org. Lett. 2008, 10, 3371; (d) Hattori, Y.;
Furuhata, S.; Okajima, M.; Konno, H.; Abe, M.; Miyoshi, H.; Goto, T.; Makabe, H.
17. Pucheault, M. Org. Biomol. Chem. 2008, 6, 424.