Journal of the American Chemical Society
ARTICLE
In summary, the results of our in-depth mechanistic studies of
the hydroamidation support a catalytic cycle with ruthenium
hydride and vinylidene species as the key intermediates. We thus
propose that the reaction proceeds via an oxidative addition of
the amide, followed by insertion of a π-coordinated alkyne into a
rutheniumꢀhydride bond, rearrangement to a vinylidene spe-
cies, nucleophilic attack of the amide, and finally reductive elimina-
tion of the product. This catalytic cycle is in agreement with all
experimental results and is supported by DFT calculations that
confirm the stability of all reaction intermediates.
(11) (a) van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.;
Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, H. M.; Maljaars,
E. P.; Wilians, C. E.; Hyett, D.; Boogers, A. F.; Hendricks, J. W.; de Vries,
J. G. Adv. Synth. Catal. 2003, 345, 308–323. (b) Blaser, H.-U.; Malan, C.;
Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003,
345, 103–151.
(12) (a) Dupau, P.; Le Gendre, P.; Bruneau, C.; Dixneuf, P. H.
Synlett 1999, 1832–1834. (b) Wang, X.; Porco, J. A., Jr. J. Org. Chem.
2001, 66, 8215–8221. (c) Bayer, A.; Maier, M. E. Tetrahedron 2004,
60, 6665–6677. (d) Adam, W.; Bosio, S. G.; Turro, N. J. J. Org. Chem.
2004, 69, 1704–1715. (e) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org.
Chem. 1998, 63, 6084–6098.
(13) (a) Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1
1988, 2185–2195. (b) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett
2000, 397–399. (c) Sato, M. J. Org. Chem. 1961, 26, 770–779.
(14) (a) Ager, D. J. Synthesis 1984, 384–398. (b) F€urstner, A.;
Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001, 3, 3955–3957.
(15) Krompiec, S.; Pigulla, M.; Kuꢀznik, N.; Krompiec, M.; Marciniec,
B.; Chadyniak, D.; Kasperczyk, J. J. Mol. Catal. A: Chem. 2005, 225, 91–101.
(16) (a) Wallace, D. J.; Klauber, D. J.; Chen, C.-Y.; Volante, R. P. Org.
Lett. 2003, 5, 4749–4752; (b) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald,
S. L. Org. Lett. 2003, 5, 3667–3669; (c) Pan, X.; Cai, Q.; Ma, D. Org. Lett.
2004, 6, 1809–1812; (d) Brice, J. L.; Meerdink, J. E.; Stahl, S. S. Org. Lett.
2004, 6, 1845–1848; (e) Han, C.; Shen, R.; Su, S.; Porco, J. A., Jr. Org. Lett.
2004, 6, 27–30;(f)Tracey, M. R.;Hsung, R. P.;Antoline, J.;Kurtz, K. C. M.;
Shen, L.; Slafer, B. W.; Zhang, Y. Sci. Synth. 2005, 21, 387–475; (g) Klapars,
A.; Campos, K. R.; Chen, C.; Volante, R. P. Org. Lett. 2005, 7, 1185–1188;
(h) Bolshan, Y.; Batey, R. A. Angew. Chem. 2008, 120, 2139–2142; Angew.
Chem. Int. Ed. 2008, 47, 2109–2112.
(17) (a) Goossen, L. J.; D€ohring, A. Adv. Synth. Catal. 2003,
345, 943–947. (b) Goossen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002,
10, 1721–1723. (c) Goossen, L. J.; Ghosh, K. Chem. Commun 2001,
20, 2084–2085. (d) Goossen, L. J.; Goossen, K.; Rodríguez, N.;
Blanchot, M.; Linder, C.; Zimmermann, B. Pure Appl. Chem. 2008,
80, 1725–1731.
(18) Heider, M.; Henkelmann, J.; Ruehl, T. EP 646571 1995 [Chem.
Abstr. 1995, 123, 229254].
(19) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc.
Chem. Commun 1995, 413–414.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
full spectroscopic data of the deuterium-labeling, the in situ IR,
the in situ NMR, the in situ ESIꢀMS and the competition ex-
periments. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
goossen@chemie.uni-kl.de; gns@chemie.uni-kl.de
’ ACKNOWLEDGMENT
We thank the DFG and NanoKat and OPTIMAS for financial
support, Umicore for donating chemicals, Mettler Toledo for
giving us access to a ReactIR spectrometer, and the DAAD (K.S.
M.S) and Landesgraduiertenf€orderung Rheinland-Pfalz (M.A.
and A.F.) and Hans-B€ockler-Stiftung (F.M.) for scholarships,
and Dr. M. Blanchot for technical assistance. Part of this work
was performed in preparation of the new transregional colla-
borative research center SFB/TRR 88 3MET.
’ REFERENCES
(1) Yet, L. Chem. Rev. 2003, 103, 4283–4306.
(2) Sugie, Y.; Dekker, K. A.; Hirai, H.; Ichiba, T.; Ishiguro, M.;
Shiomi, Y.; Sugiura, A.; Brennan, L.; Duignan, J.; Huang, L. H.; Sutcliffe,
J.; Kojima, Y. J. Antibiot. 2001, 54, 1060–1065.
(3) (a) McDonald, L. A.; Swersey, J. C.; Ireland, C. M.; Carroll, A. R.;
Coll, J. C.; Bowden, B. F.; Fairchild, C. R.; Cornell, L. Tetrahedron 1995,
51, 5237–5244. (b) Boyd, M. R.; Farina, C.; Belfiore, P.; Gagliardi, S.;
Kim, J. W.; Hahakawa, Y.; Beutler, J. A.; Mckee, T. C.; Bowman, B. J.;
Bowman, E. J. J. Pharmacol. Exp. Ther. 2001, 297, 114–120.
(4) Davyt, D.; Entz, W.; Fernandez, R.; Mariezcurrena, R.; Mombrꢀu,
A. W.; Salda~na, J.; Domínguez, L.; Coll, J.; Manta, E. J. Nat. Prod. 1998,
61, 1560–1563.
(5) (a) Vidal, J.-P.; Escale, R.; Girard, J.-P.; Rossi, J.-C. J. Org. Chem.
1992, 57, 5857–5860. (b) Erickson, K. L.; Beutler, J. A.; Cardellina, J. H.;
Boyd, M. R. J. Org. Chem. 1997, 62, 8188–8192. (c) Jansen, R.;
Washausen, P.; Kunze, B.; Reichenbach, H.; H€ofle, G. Eur. J. Org. Chem.
1999, 1085–1089.
(20) (a) Tokunaga, M.; Wakatsuki, Y. Angew. Chem. 1998, 110,
3024–3027; Angew. Chem. Int. Ed. 1998, 37, 2867–2869; (b) Tokunaga,
M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y.
J. Am. Chem. Soc. 2001, 123, 11917–11924; (c) Grotjahn, D. B.; Incarvito,
C. D.; Rheingold, A. L. Angew. Chem. 2001, 113, 4002–4005; Angew.
Chem. Int. Ed. 2001, 40, 3884–3887; (d) Chevallier, F.; Breit, B. Angew.
Chem. 2006, 118, 1629–1632; Angew. Chem. Int. Ed. 2006, 45,
1599–1602. (e) Labonne, A.; Kribber, T.; Hintermann, L. Org. Lett.
2006, 8, 5853–5856. (f) Hintermann, L.; Kribber, T.; Labonne, A.;
Paciok, E. Synlett 2009, 2412–2416.
(21) (a) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689–1691.
(b) Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem.
1987, 52, 2230–2239. (c) Ruppin, C.; Dixneuf, P. H. Tetrahedron Lett.
1986, 27, 6323–6324. (d) Philippot, K.; Devanne, D.; Dixneuf, P. H.
J. Chem. Soc. Chem. Commun. 1990, 1199–1200. (e) Neveux, M.; Seiller,
B.; Hagedorn, F.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1993,
451, 133–138. (f) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun.
2003, 706–707.
(6) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455–3460.
(7) (a) Stevenson, P. J.; Graham, I. ARKIVOC 2003, 7, 139–144. (b)
Gaulon, C.; Dhal, R.; Chapin, T.; Maisonneuve, V.; Dujardin, G. J. Org.
Chem. 2004, 69, 4192–4202.
(8) Roff, G. J.; Lloyd, R. C.; Turner, N. J. J. Am. Chem. Soc. 2008,
126, 4098–4099.
(9) Willans, C. E.; Mulders, J. M. C. A.; de Vries, J. G.; de Vries,
A. H. M. J. Organomet. Chem. 2003, 687, 494–497.
(10) Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem.
2004, 116, 1711–1713; Angew. Chem. Int. Ed. 2004, 43, 1679–1681.
(22) (a) Uchimaru, Y. Chem. Commun 1999, 1133–1134; (b)
Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem. 1999, 111,
3416–3419; Angew. Chem. Int. Ed. 1999, 38, 3222–3225. (c) Kondo, T.;
Okada, T.; Suzuki, T.; Mitsudo, T.-a. J. Organomet. Chem. 2001,
622, 149–154. (d) Fukumoto, Y.; Dohi, T.; Masaoka, H.; Chatani, N.;
Murai, S. Organometallics 2002, 21, 3845–3847. (e) Shimada, T.;
Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646–6647. (f) Yi, C. S.;
Yun, S. Y.; Guzei, I. A. J. Am. Chem. Soc. 2005, 127, 5782–5783. (g) Li, Y.;
Marks, T. J. Organometallics 1996, 15, 3770–3772. (h) Li, Y.; Marks, T. J.
J. Am. Chem. Soc. 1998, 120, 1757–1771.
7448
dx.doi.org/10.1021/ja111389r |J. Am. Chem. Soc. 2011, 133, 7428–7449