4
N. Tetrahedron Lett. 2007, 48, 2707-2711; (c) Rao, M. L. N.;
Jadhav, D. N.; Banerjee, D. Tetrahedron 2008, 64, 5762-5772.
Table 6.
Cross-couplings with 1-chloro-2,4-dinitrobenzene 1e.a-c
8.
(a) Gagnon, A.; Dansereau, J.; Le Roch, A. Synthesis 2017, 49,
1707-1745 and references cited therein; (b) Hebert, M.; Petiot, P.;
Benoit, E.; Dansereau, J.; Ahmad, T.; Roch, A. L.; Ottenwaelder,
X.; Gagnon, A. J. Org. Chem. 2016, 81, 5401-5416; (c) Yamazaki,
O.; Tanaka, T.; Shimada, S.; Suzuki, Y.; Tanaka, M. Synlett
2004, 1921-1924; (d) Jadhav, B. D.; Pardeshi, S. K. Appl.
Organometal. Chem. 2017, 31, e3591; (e) Zhou, W.-J.; Wang, K.-
H.; Wang, J.-X.; Huang, D.-F. Eur. J. Org. Chem. 2010, 416-419;
(f) Rao, M. L. N.; Dhanorkar, R. J. RSC Adv. 2014, 4, 13134-
13144; (g) Rao, M. L. N.; Giri, S. RSC Adv. 2012, 2, 12739-12750;
(h) Rao, M. L. N.; Giri, S.; Jadhav, D. N. Tetrahedron Lett. 2009,
50, 6133-6138. (i) Kutudila, P.; Linguerri, R.; Al-Mogren, M. M.;
Pichon, C.; Condon, S.; Hochlaf, M. Theor. Chem. Acc. 2016, 135,
176.
(a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174-238; (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.;
Lemaire, M. Chem. Rev. 2002, 102, 1359-1469; (c) Prieto, M.;
Mayor, S.; Lloyd-Williams, P.; Giralt, E. J. Org. Chem. 2009, 74,
9202-9205; (d) Bringmann, G.; Gulder, T.; Gulder, T. A. M.;
Breuning, M. Chem. Rev. 2011, 111, 563-569; (e) Kozlowski, M.
C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193-
3207; (f) Yasuda, N. J. Organomet. Chem. 2002, 253, 279-287.
Pd(OAc)2 (0.1 equiv.)
Ar
Ar
PCy3 (0.4 equiv.)
Cs2CO3 (3 equiv.)
TBAI (5 equiv.)
Bi
O2N
Cl
O2N
Ar
Ar
NO2
NO2
5a-5m
(3 equiv.)
DMF, 110 oC, 4 h
1e
(3.5 equiv.)
Entry
BiAr3
Yield (%)
Product
1
Bi
Bi
Bi
O2N
65
3
NO2
NO2
5a
5b
2
3
Me
O2N
O2N
Me
80
72
3
OMe
OiPr
OMe
3
NO2 5c
NO2 5d
9.
OiPr
4
5
Bi
Bi
80
72
O2N
O2N
3
3
Me
NO2
Me
5e
6
O2N
71
Bi
3
10. Xiao, C. L.; Boal, R. J. Plant Dis. 2009, 93, 185-189.
11. (a) Glasnov, T. N.; Kappe, C. O. Adv. Synth. Catal. 2010, 352,
3089-3097; (b) Volovych, I.; Neumann, M.; Schmidt, M.; Buchner,
G.; Yang, J.-Y.; Wolk, J.; Sottmann, T.; Strey, R.; Schomacker, R.;
Schwarze, M. RSC Adv. 2016, 6, 58279-58287.
12. Drageset, A.; Elumalai, V.; Bjorsvik, H.-R. React. Chem. Eng.,
2018, 3, 550-558.
13. Representative procedure for the cross-coupling of 1a with
triarylbismuth reagents: (Table 2). An oven-dried Schlenk tube
NO2 5f OMe
OMe
Bi
Bi
Bi
Bi
F
O2N
O2N
O2N
O2N
F
7
8
60
63
74
72
3
5g
5h
NO2
NO2
NO2
NO2
Cl
Cl
3
9
OEt
OEt
OnBu
3
5i
5j
under
a nitrogen atmosphere was charged with 4-chloro-
nitrobenzene (1a) (0.875 mmol, 3.5 equiv.), BiAr3 (0.25 mmol, 1
equiv.), Pd(OAc)2 (0.025 mmol, 0.1 equiv.), P(p-tolyl)3 (0.1 mmol,
0.4 equiv.), Cs2CO3 (0.75 mmol, 3 equiv.) and DMF (3 mL). This
mixture was stirred in an oil bath at 90 oC for 6 h. Then the contents
were cooled to rt, quenched with water and extracted with ethyl
acetate (30 mL). The organic extract was treated with brine, dried
over anhydrous MgSO4 and concentrated. The crude product was
purified by silica gel column chromatography (using hexane and
ethyl acetate as eluent) to obtain 2a in 79% yield.
10
OnBu
OiBu
3
3
Bi
Bi
O2N
O2N
OiBu
11
12
78
56
5k
5l
NO2
NO2
3
3
F
F
14. Cross-coupling of 1b with triarylbismuth reagents: (Table 3). The
representative cross-coupling procedure given for Table 2 was
followed with the following reagents and conditions: arylchloride
1b (0.875 mmol, 3.5 equiv.), BiAr3 (0.25 mmol, 1 equiv.),
Pd(OAc)2 (0.025 mmol, 0.1 equiv.), P(p-anisyl)3 (0.1 mmol, 0.4
13
O2N
59
Bi
NO2
Cl
Cl
5m
a Reagents and conditions: 1e (0.875 mmol, 3.5 equiv.), BiAr3 (0.25 mmol, 1
equiv.), Pd(OAc)2 (0.025 mmol, 0.1 equiv.), PCy3 (0.1 mmol, 0.4 equiv.),
Cs2CO3 (0.75 mmol, 3 equiv.), TBAI (1.25 mmol, 5 equiv.), DMF (3 mL),
110 oC, 4 h.
o
equiv.), Cs2CO3 (0.75 mmol, 3 equiv.) and DMF (3 mL) at 90 C
for 6 h.
15. Cross-coupling of 1c-1e with triarylbismuth reagents: (Table 5 and
Table 6). The representative cross-coupling procedure given for
Table 2 was followed with the following reagents and conditions:
arylchloride 1c-1e (0.875 mmol, 3.5 equiv.), BiAr3 (0.25 mmol, 1
equiv.), Pd(OAc)2 (0.025 mmol, 0.1 equiv.), PCy3 (0.1 mmol, 0.4
equiv.), Cs2CO3 (0.75 mmol, 3 equiv.), TBAI (1.25 mmol, 5 equiv.)
and DMF (3 mL) at 110 oC for 4 h.
b Isolated yield.
c Homo-coupled biaryl from BiAr3 was obtained in minor amounts.
Acknowledgments
We acknowledge the financial support (Project No.
02(0091)/12/EMR-II) received from the Council of Scientific and
Industrial Research (CSIR), New Delhi. S.M also acknowledges
the research fellowship from the CSIR, New Delhi.
Highlights:
Aryl chloride couplings
Triarylbismuth Reagents
Palladium catalysis
References and notes
Atom-efficient couplings
Threefold couplings
1.
2.
3.
Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651-2710.
Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275-286.
Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M.; Chem. Rev.
2006, 106, 4622-4643.
4.
5.
Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177-2250.
Seechurn, C. C. C. J.; Kitching, M.O.; Colacot, T. J; Snieckus, V.
Angew. Chem. Int. Ed. 2012, 51, 5062-5085.
6.
7.
Shimada, S.; Rao, M. L. N. Top. Curr. Chem. 2012, 311, 199-228
and references cited therein.
(a) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N. Tetrahedron Lett.
2007, 48, 6644-6647; (b) Rao, M. L. N.; Banerjee, D.; Jadhav, D.