which consisted of an arylamine as the electron donor, a
2-cyanoacrylic acid as the electron acceptor, and a conjugated
bridge containing thiophene moieties.8 Compared with
benzenoid moieties, the thiophene can provide more effective
conjugation and lower the energy of the charge transfer
transition9 because of its smaller resonance energy (thiophene,
29; benzene, 36 kcal/mol).10 It is therefore interesting to
incorporate the furan ring with a smaller resonance energy
(16 kcal/mol) in the spacer. In this letter, we report new
metal-free compounds 1-4 (Figure 1) consisting of a
synthesized from Wittig reagents containing a triphenylamine
or a diphenylamino-2-fluorene moiety. Reactions of these
Wittig reagents with 2-furaldehyde provided intermediates
1b and 4b, which underwent formylation to form 1c and 4c.
The desired products were obtained from the subsequent
Knoevenagel condensation of 1c (or 4c) with cyanoacetic
acid. For the preparation of 2 and 3, 5-bromo-2-furaldehyde
was allowed to react with appropriate phenylboronic acid
via Suzuki coupling11 and with a stannyl compound via Stille
coupling,12 respectively, to form intermediates 2b and 3b.
Subsequent reactions of the intermediates with cyanoacetic
acid afforded the desired compounds.
The absorption of 1-4 recorded in THF solution and the
absorption spectrum of 1 in MeCN (vide infra) are displayed
in Figure 2, and the data are collected in Table 1. The
emission spectra are shown in Figure S1, Supporting
Information (see ESI). A prominent band at ∼400-600 nm
can be attributed to the superposition of π-π* and charge
transfer transitions. The charge transfer characteristic in these
dyes is also supported by the large Stokes shifts between
the absorption and the emission bands (3225-4895 cm-1).
A negative solvatochromism, i.e., blue shift of the charge
transfer band in more polar solvents, was noticed in these
dyes. For example, the absorption maxima (λmax) of 1 are
485 and 439 nm in toluene and acetonitrile, respectively.
This phenomenon can be attributed to the deprotonation of
the carboxylic acid, which decreases the strength of the
electron acceptor.7j,8d,e,13
Figure 1. Structure of the dyes.
diphenylamine donor, a 2-cyanoacrylic acid acceptor, and a
bridge with a furan moiety.
The dyes were obtained in moderate yields by the synthetic
protocol illustrated in Scheme 1. Compounds 1 and 4 were
A quasi-reversible wave (Eox in Table 1) observed for each
compound in the cyclic voltammetry measurements may be
attributed to the oxidation of the arylamine. Because of the
shorter spacers in 1 and 2, the electron-withdrawing acceptor
has greater influence on the arylamine and results in higher
oxidation potentials of the arylamines. The excited-state
potential (E0-0*) of the compounds (-0.74 to -0.80 V vs
NHE), deduced from Eox and the zero-zero excitation energy
(E0-0) from the absorption band edge, is more negative than
the conduction-band-edge energy level of the TiO2 electrode
(-0.5 V vs NHE)14 and assures that the electron injection
process is energetically favorable.
DSSCs were fabricated using these dyes as the sensitizers,
with an effective area of 0.25 cm2, nanocrystalline anatase
TiO2 particles, and the electrolyte composed of 0.05 M I2/
0.5 M LiI/0.5 M tert-butylpyridine in acetonitrile solution.
The device performance statistics under AM 1.5 illumination
are listed in Table 1. Figure 3 shows the photocurrent-voltage
(J-V) curves of the cells. The incident photon-to-current
conversion efficiencies (IPCE) of the dyes on TiO2 are plotted
in Figure 4. The cells exhibit very high conversion efficien-
cies (6.12 to 7.36%), and the best performance of the device
reaches ∼96% of a N719-based DSSC (7.69%) fabricated
(6) (a) Ito, S.; Zakeeruddin, M.; Hummphrey-Baker, R.; Liska, P.;
Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Pe´chy, P.; Takata, M.; Miura,
H.; Uchida, S.; Gra¨tzel, M. AdV. Mater. 2006, 18, 1202. (b) Choi, H.; Baik,
C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Gra¨tzel, M.
Angew. Chem., Int. Ed. 2008, 47, 327.
(7) (a) Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.;
Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783. (b)
Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004,
126, 12218. (c) Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001,
105, 9960. (d) Yao, Q.-H.; Meng, F.-S.; Li, F.-Y.; Tian, H.; Huang, C.-H.
J. Mater. Chem. 2003, 13, 1048. (e) Sayama, K.; Tsukagoshi, S.; Mori, T.;
Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. Sol. Energy
Mater. Sol. Cells 2003, 80, 47. (f) Ferrere, S.; Zaben, A.; Gregg, B. A. J.
Phys. Chem. B 1997, 101, 449. (g) Ferrere, S.; Gregg, B. A. New J. Chem.
B 2002, 26, 1155. (h) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.;
Sugihara, H.; Arakawa, H. Chem. Lett. 2000, 29, 316. (i) Hara, K.; Sato,
T.; Katoh, R.; Furube, A.; Yashihara, T.; Murai, M.; Kurashige, M.; Ito,
S.; Shinpo, A.; Suga, S.; Arakawa, H. AdV. Funct. Mater. 2005, 15, 246.
(j) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt,
A.; Sun, L. Chem. Commun. 2006, 2245. (k) Hagberg, D. P.; Marinado,
T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.;
Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550. (l) Koumura, N.; Wang,
Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc.
2006, 128, 14256. (m) Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.-
H.; Fantacci, S.; De Angelis, F. D.; Censo, D.; Nazeeruddin, M. K.; Gra¨tzel,
M. J. Am. Chem. Soc. 2006, 128, 16701. (n) Choi, H.; Lee, J. K.; Song,
K. H.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1553. (o) Kim,
D.; Lee, J. K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1913. (p) Choi,
H.; Lee, J. K.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 3115.
(8) (a) Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y.-C.; Ho,
K.-C. Org. Lett. 2005, 7, 1899. (b) Justin Thomas, K. R.; Lin, J. T.; Hsu,
Y.-C.; Ho, K.-C. Chem. Commun. 2005, 4098. (c) Tsai, M.-S.; Hsu, Y.-C.;
Lin, J. T.; Chen, H.-C.; Hsu, C.-P. J. Phys. Chem. C 2007, 111, 18785. (d)
Justin Thomas, K. R.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai,
C.-H.; Cheng, Y.-M.; Chou, P.-T. Chem. Mater. 2008, 20, 1830. (e) Yen,
Y.-S.; Hsu, Y.-C.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys.
Chem. C 2008, 112, 12557.
(11) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
(12) Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508.
(13) Nazeeruddin, M. K.; Pe´chy, P.; Renouard, T.; Zakeeruddin, S. M.;
Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover,
V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gra¨tzel, M. J. Am. Chem.
(9) (a) Morley, J. O.; Push, D. J. Chem. Soc., Faraday Trans. 1991, 87,
3021. (b) Wu, I.-Y.; Lin, J. T.; Luo, J.; Li, C.-S.; Tsai, C.; Wen, Y. S.;
Hsu, C.-C.; Yeh, F.-F.; Liou, S. Organometallics 1998, 17, 2188.
(10) March, J. AdVanced Organic Chemistry, 4th ed. ; Wiley: New York,
1992; p 45.
Soc. 2001, 123, 1613
.
(14) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.;
Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003,
107, 597.
98
Org. Lett., Vol. 11, No. 1, 2009