656
Organometallics 2009, 28, 656–658
Synthesis of Allylnickel Complexes with Phosphine Sulfonate
Ligands and Their Application for Olefin Polymerization without
Activators
Shusuke Noda, Takuya Kochi, and Kyoko Nozaki*
Department of Chemistry and Biotechnology, Graduate School of Engineering, The UniVersity of Tokyo,
7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
ReceiVed August 14, 2008
fluoride,5b acrylamides, vinyl pyrrolidone,6 and acrylonitrile.7
However, improvements in catalytic activity and molecular
weight of produced polymers are still desired.
In contrast, several nickel catalysts have shown considerable
catalytic activity and heteroatom tolerance. For example,
Brookhart’s nickel/R-diimine catalysts display higher activity
and produce polymers with higher molecular weight and fewer
branches than the corresponding palladium catalysts. Grubbs
and co-workers reported considerably active nickel catalysts
bearing salicylaldiminato ligand for ethylene polymerization to
generate high molecular weight polymers.8
Summary: Phosphine sulfonate nickel complexes [(o-Ar2-
PC6H4SO3)Ni(allyl)] (Ar ) Ph, o-MeOC6H4) are prepared and
used as catalysts for ethylene polymerization. The products were
low molecular weight polyethylenes possessing only methyl
branches. The actiVity for ethylene polymerization with the
phenyl-substituted complex was comparable to that of o-
methoxyphenyl-substituted complex in the absence of actiVator.
Comparison with the corresponding allylpalladium complex
reVealed that the nickel catalysts produced polyethylenes with
lower molecular weight and more branches than the palladium
catalyst.
Nickel catalysts bearing phosphine sulfonate ligands can be
candidates for more desirable catalysts. Rieger and co-workers
have reported the corresponding phenyl nickel catalysts with
triphenylphosphine ligand and performed ethylene polymeri-
zation with or without activators, such as B(C6F5)3 or Ni(cod)2.4d,9
Although improvement in the activity is observed, molecular
weights of the polymers are lower than those produced by the
palladium catalysts. The possibility of triphenylphosphine or
Introduction
Transition-metal-catalyzed insertion polymerization of olefins
has been studied and used considerably due to its great ability
to control polymer microstructures. Particularly, early transition
metal catalysts, such as Ziegler-Natta catalysts, are most widely
utilized for olefin polymerization. Recent intensive studies have
also developed the use of late-transition metals as catalysts for
olefin polymerization.1 One of the most elegant examples is
Brookhart palladium/R-diimine catalysts used for copolymeri-
zation of ethylene with alkyl acrylates.2 The palladium/R-diimine
catalysts produce unique amorphous-like highly branched
polyethylenes with over 100 branches per 1000 carbon atoms
via chain-walking. The catalysts were also successfully applied
to copolymerization of ethylene/R-olefins with alkyl acrylates
for the first time. More recently, Drent and co-workers reported
copolymerization of ethylene with alkyl acrylates3a using in situ
generated palladium catalysts bearing phosphine sulfonate
ligands.3 Polymers produced by the catalysts have very few
branches and acrylate units are incorporated into the polymer
backbone. In recent years, the phosphine sulfonate palladium
catalysts have been extensively studied4-7 because linear
copolymers of ethylene and polar vinyl monomers may provide
control over important properties such as toughness and
adhesion. Studies by many researchers, including our group,
have revealed that in situ generated and isolated phosphine
sulfonate palladium catalysts also copolymerize ethylene with
other polar vinyl monomers, such as vinyl ethers,5a vinyl
(4) (a) Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005,
24, 2755–2763. (b) Schultz, T.; Pfaltz, A. Synthesis 2005, 1005–1011. (c)
Haras, A.; Michalak, A.; Rieger, B.; Ziegler, T. J. Am. Chem. Soc. 2005,
127, 8765–8774. (d) Nowack, R. J.; Hearley, A. K.; Rieger, B. Z. Anorg.
Allg. Chem. 2005, 631, 2775–2781. (e) Kochi, T.; Yoshimura, K.; Nozaki,
K. Dalton Trans. 2006, 25–27. (f) Haras, A.; Michalak, A.; Rieger, B.;
Ziegler, T Organometallics 2006, 25, 946–953. (g) Haras, A.; Anderson,
D. W. G.; Michalak, A.; Rieger, B.; Ziegler, T. Organometallics 2006, 25,
4491–4497. (h) Skupov, K. M.; Marella, P. M.; Hobbs, J. L.; McIntosh,
L. H.; Goodall, B. L.; Claverie, J. P. Macromolecules 2006, 39, 4279–
4281. (i) Kochi, T.; Nakamura, A.; Ida, H.; Nozaki, K. J. Am. Chem. Soc.
2007, 129, 7770–7771. (j) Liu, S.; Borkar, S.; Newsham, D.; Yennawar,
H.; Sen, A. Organometallics 2007, 26, 210–216. (k) Newsham, D. K.;
Borkar, S.; Sen, A.; Conner, D. M.; Goodall, B. L. Organometallics 2007,
26, 3636–3638. (l) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F.
Organometallics 2007, 26, 6624–6635. (m) Bettucci, L.; Bianchini, C.;
Claver, C.; Suarez, E. J. G.; Ruiz, A.; Meli, A.; Oberhauser, W. Dalton
Trans. 2007, 5590–5602. (n) Skupov, K. M.; Marella, P. R.; Simard, M.;
Yap, G. P. A.; Allen, N.; Conner, D.; Goodall, B. L.; Claverie, J. P.
Macromol. Rapid Commun. 2007, 28, 2033–2038. (o) Nakamura, A.;
Munakata, K.; Kochi, T.; Nozaki, K. J. Am. Chem. Soc. 2008, 130, 8128–
8129. (p) Borkar, S.; Newsham, D. K.; Sen, A. Organometallics 2008, 27,
3331–3334.
(5) (a) Luo, S.; Vela, J.; Lief, G. R.; Jordan, R. F. J. Am. Chem. Soc.
2007, 129, 8946–8947. (b) Weng, W.; Shen, Z.; Jordan, R. F. J. Am. Chem.
Soc. 2007, 129, 15450–15451.
(6) Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41,
2309–2310.
(7) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am. Chem. Soc.
2007, 129, 8948–8949.
(8) (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Bansleben,
D. A.; Day, M. W.; Grubbs, R. H. Organometallics 1998, 17, 3149–3151.
(b) Younkin, R. T.; Connor, F. E.; Henderson, I. J.; Friedrich, K. S.; Grubbs,
H. R.; Bansleben, A. D. Science 2000, 287, 460–462.
(9) Very recently, two groups reported Ni phosphine sulfonate catalyzed
ethylene polymerization independently. (a) Zhou, X.; Bontemps, S.; Jordan,
R. F. Organometallics 2008, 27, 4821–4824. (b) Guironnet, D.; Ru¨nzi, T.;
Go¨ttker-Schnetmann, I.; Mecking, S. Chem. Commun. 2008, ASAP.
* E-mail: nozaki@chembio.t.u-tokyo.ac.jp
(1) (a) Boffa, L. S.; Novak, B. M. Chem. ReV. 2000, 100, 1479–1493.
(b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100, 1169–
1203. (c) Gibson, V. C.; Spitzmesser, S. K. Chem. ReV. 2003, 103, 283–
315.
(2) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267–268. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart,
M. J. Am. Chem. Soc. 1998, 120, 888–899.
(3) (a) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 744–745. (b) Drent, E.; van Dijk, R.; van Ginkel,
R.; van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 964–965.
10.1021/om800781b CCC: $40.75
2009 American Chemical Society
Publication on Web 12/18/2008