872
T. K. Kim et al./Chemical Papers 65 (6) 863–872 (2011)
Kim, T. K., Jeong, E. D., Oh, C. Y., Hyun, M. H., Lee, M.
S., Moon, H. K., Kim, J.-P., Jung, O.-S., Nawaz Khan,
F., & Jin, J. S. (2011). Morphology dependence of 1,2-
diphenylethylenediamine-derived organogelator templates in
solvents and their influence in the production of nanostruc-
tured silica. Chemical Papers, 65, 495–503, DOI: 10.2478/
s11696-011-0042-1.
Kleitz, F., Marlow, F., Stucky, G. D., & Schu¨th, F. (2001).
Mesoporous silica fibers: Synthesis, internal structure, and
growth kinetics. Chemistry of Materials, 13, 3587–3595. DOI:
10.1021/cm0110324.
Liang, Z., & Susha, A. S. (2004). Mesostructured silica tubes
and rods by templating porous membranes. Chemistry – A
European Journal, 10, 4910–4914. DOI: 10.1002/chem.20040
0005.
Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W.,
Hawker, C. J., Lee, V. Y., Miller, R. D., & Hedrick, J.
L. (2001). Application of hyperbranched block copolymers
as templates for the generation of nanoporous organosil-
icates. High Performance Polymers, 13, S11–S19. DOI:
10.1088/0954-0083/13/2/302.
Paik, P., Gedanken, A., & Mastai, Y. (2010). Chiral separa-
tion abilities: Aspartic acid block copolymer-imprinted meso-
porous silica. Microporous and Mesoporous Materials, 129,
82–89. DOI: 10.1016/j.micromeso.2009.09.001.
Piepenbrock, M.-O. M., Lloyd, G. O., Clark, N., & Steed, J.
W. (2010). Metal- and anion-binding supramolecular gels.
Chemical Reviews, 110, 1960–2004. DOI: 10.1021/cr9003067.
Qiao, Y., Lin, Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y.,
& Huang, J. (2009). Metal-driven hierarchical self-assembled
one-dimensional nanohelices. Nano Letters, 9, 4500–4504.
DOI: 10.1021/nl9028335.
Stupp, S. I., & Braun, P. V. (1997). Molecular manipula-
tion of microstructures: Biomaterials, ceramics, and semi-
conductors. Science, 277, 1242–1248. DOI: 10.1126/sci-
ence.277.5330.1242.
Tanev, P. T., Liang, Y., & Pinnavaia, T. J. (1997). Assembly
of mesoporous lamellar silicas with hierarchical particle ar-
chitectures. Journal of the American Chemical Society, 119,
8616–8624. DOI: 10.1021/ja970228v.
Tanev, P. T., & Pinnavaia, T. J. (1996). Biomimetic templating
of porous lamellar silicas by vesicular surfactant assemblies.
Science, 271, 1267–1269. DOI: 10.1126/science.271.5253.
1267.
Wang, L., Li, Y., Wang, H., Zhang, M., Chen, Y., Li, B., & Yang,
Y. (2010). Nanofabrication of helical hybrid silica nanotubes
using anionic gelators. Materials Chemistry and Physics,
124, 609–613. DOI: 10.1016/j.matchemphys.2010.07.021.
Yang, H., Coombs, N., & Ozin, G. A. (1997). Morphogenesis
of shapes and surface patterns in mesoporous silica. Nature,
386, 692–695. DOI: 10.1038/386692a0.
Yang, Y., Suzuki, M., Owa, S., Shirai, H., & Hanabusa, K.
(2006). Control of helical silica nanostructures using a chiral
surfactant. Journal of Materials Chemistry, 16, 1644–1650.
DOI: 10.1039/B517121K.
Yang, Z., Niu, Z., Cao, X., Yang, Z., Lu, Y., Hu, Z., & Han, C. C.
(2003). Template synthesis of uniform 1D mesostructured sil-
ica materials and their arrays in anodic alumina membranes.
Angewandte Chemie International Edition, 42, 4201–4203.
DOI: 10.1002/anie.200250808.
Yoza, K., Amanokura, N., Ono, Y., Akao, T., Shinmori, H.,
Takeuchi, M., Shinkai, S., & Reinhoudt, D. N. (1999).
Sugar-integrated gelators of organic solvents—Their remark-
able diversity in gelation ability and aggregate structure.
Qiu, H., Wang, S., Zhang, W., Sakamoto, K., Terasaki,
O., Inoue, Y., & Che, S. (2008). Steric and temperature
control of enantiopurity of chiral mesoporous silica. The
Journal of Physical Chemistry C, 112, 1871–1877. DOI:
10.1021/jp709798q.
Roopan, S. M., & Nawaz Khan, F. R. (2010a). ZnO nanoparti-
cles in the synthesis of AB ring core of camptothecin. Chem-
ical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y.
Roopan, S. M., & Nawaz Khan, F. R. (2010b). ZnO nanorods
catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone,
and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-
carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/
s11696-010-0045-3.
Chemistry – A European Journal, 5, 2722–2729. DOI:
10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM
2722>3.0.CO;2-N.
Yu, Y., Qiu, H., Wu, X., Li, H., Li, Y., Sakamoto, Y., Inoue,
Y., Sakamoto, K., Terasaki, O., & Che, S. (2008). Synthesis
and characterization of silica nanotubes with radially ori-
ented mesopores. Advanced Functional Materials, 18, 541–
550. DOI: 10.1002/adfm.200700593.
Zhang, H., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). The
removal of sodium dodecylbenzene sulfonate surfactant from
water using silica/titania nanorods/nanotubes composite
membrane with photocatalytic capability. Applied Surface
Science, 252, 8598–8604. DOI: 10.1016/j.apsusc.2005.11.090.
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H.,
Chmelka, B. F., & Stucky, G. D. (1998). Triblock copoly-
mer syntheses of mesoporous silica with periodic 50 to
300 angstrom pores. Science, 279, 548–552. DOI: 10.1126/
science.279.5350.548.
Roopan, S. M., & Nawaz Khan, F. R. (2011). SnO2 nanoparti-
cles mediated nontraditional synthesis of biologically active
9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine de-
rivatives. Medicinal Chemistry Research, 20, 732–737. DOI:
10.1007/s00044-010-9381-7.
Roopan, S. M., Nawaz Khan, F. R.,
&
Mandal, B. K.
Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., &
Li, Y. (2005). Stimuli-responsive controlled drug release from
a hollow mesoporous silica sphere/polyelectrolyte multilayer
core–shell structure. Angewandte Chemie International Edi-
tion, 44, 5083–5087. DOI: 10.1002/anie.200501500.
(2010). Fe nano particles mediated C–N bond-forming
reaction: Regioselective synthesis of 3-[(2-chloroquinolin-
3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Letters, 51,
2309–2311. DOI: 10.1016/j.tetlet.2010.02.128.
Sayari, A. (1996). Catalysis by crystalline mesoporous molec-
ular sieves. Chemistry of Materials, 8, 1840–1852. DOI:
10.1021/cm950585+.