Organometallics 2009, 28, 465–472
465
Flexible, Bowl-Shaped N-Heterocyclic Carbene Ligands: Substrate
Specificity in Iridium-Catalyzed Ketone Hydrosilylation
Anthony R. Chianese,* Allen Mo, and Dibyadeep Datta
Department of Chemistry, Colgate UniVersity, 13 Oak DriVe, Hamilton, New York 13346
ReceiVed September 9, 2008
A series of benzimidazolium chlorides was synthesized as precursors to N-heterocyclic carbene ligands,
with N-substituents varying in size from 3,5-xylyl (1a) to first-generation dendritic 3,5-bis(3,5-di-tert-
butylphenyl)phenyl (1b), to the second-generation 3,5-bis[3,5-bis(3,5-di-tert-butylphenyl)phenyl]phenyl
(1c). The dendritic side groups of 1b and 1c form a flexible, bowl-like cavity. Iridium complexes of
1a-c were synthesized and were shown to be catalytically active for the hydrosilylation of aryl methyl
ketones. The dendritic ligands 1b and 1c effect a moderate level of substrate specificity in the competitive
hydrosilylation of ketones of varying size. In the competitive hydrosilylation of acetophenone versus
3-(3,5-di-tert-butylphenyl)acetophenone, acetophenone is consumed approximately 3.7 times more quickly
using the second-generation ligand 1c. Using the control ligand 1a, this ratio is 1.8.
mond, Bergman, et al.12,13 have demonstrated selective catalysis
inside enclosed self-assembled containers. Mirkin and co-
workers14,15 have designed allosterically regulated catalysts.
One strategy that mimics some features of enzyme catalysis
is to enclose a catalyst in the core of a dendrimer.16-22 With
higher generations, the reaction microenvironment is defined
increasingly by the dendrimer structure rather than the solvent.
Interesting and potentially useful effects have been observed,
including increased catalyst activity,23,24 varied selectivity,25-27
and substrate specificity.28,29
Introduction
A central goal in synthetic chemistry is the development of
organic transformations that are simultaneously general and
specific. The most widely useful methods offer predictable
selectivity for a well-defined class of substrates, ideally tolerating
variations in substrate auxiliary functionality and steric size.
Homogeneous catalysis is at the center of this effort, as rational
and empirical variation of the catalyst structure provides a
versatile, cost-effective manifold for optimizing the reaction
outcome. Enzymes are known for their often extreme substrate
specificity, but Nature has also evolved catalysts with syntheti-
cally useful generality, as evidenced by the utility of lipases in
kinetic resolutions.1
This report describes the synthesis of dendritic N-heterocyclic
carbene (NHC)30 ligands expected to exhibit a bowl-like
topology and their application to iridium-catalyzed ketone
hydrosilylation, with an emphasis on discrimination between
Efforts at bridging the gap between traditional synthetic
catalysis and the exquisite, superstructure-directed selectivity
exhibited by enzymes are challenging, but many successes2
motivate continued study. For example, Nolte et al.,3 Gibson
and Rebek,4 and Crabtree, Brudvig, et al.5 have observed
substrate recognition in transition metal catalysis using rationally
designed, host-like ligands. Breit and co-workers6-8 and Reek
and co-workers9 have employed recognition in ligand self-
assembly. Nguyen, Hupp, et al.10 and Wa¨rnmark et al.11 have
employed self-assembled catalysts for specificity, while Ray-
(12) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc.
Chem. Res. 2005, 38, 349–358.
(13) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int.
Ed. 2004, 43, 6748–6751.
(14) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc.
2005, 127, 1644–1645.
(15) Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.;
Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508–
10509.
(16) Brunner, H. J. Organomet. Chem. 1995, 500, 39–46.
(17) Smith, D. K.; Diederich, F. Chem.-Eur. J. 1998, 4, 1353–1361.
(18) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991–3023.
(19) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P.
Angew. Chem., Int. Ed. 2001, 40, 1828–1849.
(20) Twyman, L. J.; King, A. S. H.; Martin, I. K. Chem. Soc. ReV. 2002,
31, 69–82.
* To whom correspondence should be addressed. E-mail: achianese@
colgate.edu.
(1) Turner, N. J. Curr. Opin. Chem. Biol. 2004, 8, 114–119.
(2) Das, S.; Brudvig, G. W.; Crabtree, R. H. Chem. Commun. 2008,
413–424.
(21) Helms, B.; Fre´chet, J. M. J. AdV. Synth. Catal. 2006, 348, 1125–
1148.
(3) Coolen, H. K. A. C.; Meeuwis, J. A. M.; Van Leeuwen, P. W. M. N.;
Nolte, R. J. M. J. Am. Chem. Soc. 1995, 117, 11906–11913.
(4) Gibson, C.; Rebek, J. Org. Lett. 2002, 4, 1887–1890.
(5) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science
2006, 312, 1941–1943.
(6) Weis, M.; Waloch, C.; Seiche, W.; Breit, B. J. Am. Chem. Soc. 2006,
128, 4188–4189.
(22) Me´ry, D.; Astruc, D. Coord. Chem. ReV. 2006, 250, 1965–1979.
(23) Fujihara, T.; Obora, Y.; Tokunaga, M.; Sato, H.; Tsuji, Y. Chem.
Commun. 2005, 4526–4528.
(24) Mu¨ller, C.; Ackerman, L. J.; Reek, J. N. H.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2004, 126, 14960–14963.
(25) Ooe, M.; Murata, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am.
Chem. Soc. 2004, 126, 1604–1605.
(7) Breit, B.; Seiche, W. Angew. Chem., Int. Ed. 2005, 44, 1640–1643.
(8) Breit, B.; Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608–6609.
(9) Kuil, M.; Soltner, T.; van Leeuwen, P.; Reek, J. N. H. J. Am. Chem.
Soc. 2006, 128, 11344–11345.
(10) Merlau, M. L.; Mejia, M. D. P.; Nguyen, S. T.; Hupp, J. T. Angew.
Chem., Int. Ed. 2001, 40, 4239–4242.
(26) Oosterom, G. E.; van Haaren, R. J.; Reek, J. N. H.; Kamer, P. C. J.;
van Leeuwen, P. Chem. Commun. 1999, 1119–1120.
(27) Sato, H.; Fujihara, T.; Obora, Y.; Tokunaga, M.; Kiyosu, J.; Tsuji,
Y. Chem. Commun. 2007, 269–271.
(28) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am.
Chem. Soc. 1996, 118, 5708–5711.
(11) Jo´nsson, S.; Odille, F. G. J.; Norrby, P. O.; Wa¨rnmark, K. Chem.
Commun. 2005, 549–551.
(29) Chow, H. F.; Mak, C. C. J. Org. Chem. 1997, 62, 5116–5127.
(30) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309.
10.1021/om800878m CCC: $40.75
2009 American Chemical Society
Publication on Web 12/19/2008