10.1002/anie.201903839
Angewandte Chemie International Edition
COMMUNICATION
[3]
a) J. P. Chambon, J. Brochard, A. Hallot, M. Heaulme, R. Brodin, R.
Roncucci, K. Biziere, J. Pharmacol. Exp. Ther. 1985, 233, 836-844; b) A.
Perio, J. P. Chambon, R. Calassi, M. Heaulme, K. Biziere, J. Pharmacol.
Exp. Ther. 1986, 239, 542-547; c) M. Asif, Curr. Med. Chem. 2012, 19,
2984-2991; d) H. Abou-Hamdan, L. Désaubry, J. Org. Chem. 2018, 83,
2954-2958.
[14] A crystal structure of the pyridazine-BF3 adduct 2 was obtained:
[4]
[5]
[6]
[7]
a) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591; b) C. G.
Wermuth, MedChemComm 2011, 2, 935-941.
R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57,
5845-5859.
For further details, see the Supporting Information.
a) T. Imahori, Y. Kondo, J. Am. Chem. Soc. 2003, 125, 8082-8083; b) T.
Imahori, K. Suzawa, Y. Kondo, Heterocycles 2008, 76, 1057-1060.
a) M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff, P. Knochel, Angew.
Chem. Int. Ed. 2010, 49, 5451-5455; Angew. Chem. 2010, 122, 5582-
5586; b) S. Duez, A. K. Steib, S. M. Manolikakes, P. Knochel, Angew.
Chem. Int. Ed. 2011, 50, 7686-7690; Angew. Chem. 2011, 123, 7828-
7832; c) Q. Chen, X. M. du Jourdin, P. Knochel, J. Am. Chem. Soc. 2013,
135, 4958-4961; d) K. Groll, S. M. Manolikakes, X. M. du Jourdin, M.
Jaric, A. Bredihhin, K. Karaghiosoff, T. Carell, P. Knochel, Angew. Chem.
Int. Ed. 2013, 52, 6776-6780; Angew. Chem. 2013, 125, 6909-6913.
D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441;
Angew. Chem. 2015, 127, 6498-6541.
[15] For reviews, see: a) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel,
Angew. Chem. Int. Ed. 2011, 50, 9794-9824; Angew. Chem. 2011, 123,
9968-9999; b) T. Klatt, J. T. Markiewicz, C. Sämann, P. Knochel, J. Org.
Chem. 2014, 79, 4253-4269; c) M. Balkenhohl, P. Knochel, SynOpen
2018, 02, 78-95; d) S. D. Robertson, M. Uzelac, R. E. Mulvey, Chem.
Rev. 2019, DOI: 10.1021/acs.chemrev.9b00047.
For recent examples, see: d) M. Balkenhohl, C. François, D. Sustac
Roman, P. Quinio, P. Knochel, Org. Lett. 2017, 19, 536-539; e) D. S.
Ziegler, R. Greiner, H. Lumpe, L. Kqiku, K. Karaghiosoff, P. Knochel, Org.
Lett. 2017, 19, 5760-5763; f) L. A. Bozzini, J. H. C. Batista, M. B. M. de
Mello, R. Vessecchi, G. C. Clososki, Tetrahedron Lett. 2017, 58, 4186-
4190; g) M. Balkenhohl, B. Heinz, T. Abegg, P. Knochel, Org. Lett. 2018,
20, 8057-8060.
[8]
[9]
For recent examples, see: a) T. Klatt, V. Werner, M. G. Maximova, D.
Didier, Y. Apeloig, P. Knochel, Chem. Eur. J. 2015, 21, 7830-7834; b) M.
Balkenhohl, R. Greiner, I. S. Makarov, B. Heinz, K. Karaghiosoff, H.
Zipse, P. Knochel, Chem. Eur. J. 2017, 23, 13046-13050; c) M.
Balkenhohl, B. Salgues, T. Hirai, K. Karaghiosoff, P. Knochel, Org. Lett.
2018, 20, 3114-3118.
[16] For recent examples, see: a) M. A. Ganiek, M. R. Becker, M. Ketels, P.
Knochel, Org. Lett. 2016, 18, 828-831; b) B. V. Lam, Y. Berhault, S.
Stiebing, C. Fossey, T. Cailly, V. Collot, F. Fabis, Chem. Eur. J. 2016, 22,
4440-4446; c) Y.-H. Chen, M. Ellwart, G. Toupalas, Y. Ebe, P. Knochel,
Angew. Chem. Int. Ed. 2017, 56, 4612-4616; Angew. Chem. 2017, 129,
4683-4687; d) M. E. Dalziel, P. Chen, D. E. Carrera, H. Zhang, F.
Gosselin, Org. Lett. 2017, 19, 3446-3449; e) L. Klier, D. S. Ziegler, R.
Rahimoff, M. Mosrin, P. Knochel, Org. Process Res. Dev. 2017, 21, 660-
663.
[10] For literature on directed ortho-metalation, see: a) V. Snieckus, Chem.
Rev. 1990, 90, 879-933; b) The Directed ortho Metalation Reaction: A
Point of Departure for New Synthetic Aromatic Chemistry. In Modern
Arene Chemistry; C. G. Hartung, V. Snieckus, Eds.; Wiley-VCH:
Weinheim, Germany, 2004; pp 330−367; c) S. Usui, Y. Hashimoto, J. V.
Morey, A. E. H. Wheatley, M. Uchiyama, J. Am. Chem. Soc. 2007, 129,
15102-15103; d) Y. Kondo, J. V. Morey, J. C. Morgan, H. Naka, D.
Nobuto, P. R. Raithby, M. Uchiyama, A. E. H. Wheatley, J. Am. Chem.
Soc. 2007, 129, 12734-12738; e) J. Board, J. L. Cosman, T. Rantanen,
S. P. Singh, V. Snieckus, Platinum Met. Rev. 2013, 57, 234-258.
[11] a) P. C. Andrikopoulos, D. R. Armstrong, D. V. Graham, E. Hevia, A. R.
Kennedy, R. E. Mulvey, C. T. O'Hara, C. Talmard, Angew. Chem. Int. Ed.
2005, 44, 3459-3462; Angew. Chem. 2005, 117, 3525-3528; b) D. R.
Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman,
R. E. Mulvey, Angew. Chem. Int. Ed. 2006, 45, 3775-3778; Angew.
Chem. 2006, 118, 3859-3862; c) A. J. Martínez-Martínez, A. R. Kennedy,
R. E. Mulvey, C. T. O’Hara, Science 2014, 346, 834-837.
[17] a) A. O. King, N. Okukado, E.-i. Negishi, J. Chem. Soc., Chem. Commun.
1977, 683; b) D. Haas, J. M. Hammann, R. Greiner, P. Knochel, ACS
Catal. 2016, 6, 1540.
[18] V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585-9595.
[19] We propose, that the first equivalent of TMPMgCl·LiCl, BF3·OEt2 and
pyridazine form a complex, in which both reagents act as Lewis acids.
The second equivalent of TMPMgCl·LiCl may then deprotonate the C5-
position.
[20] CCDC 1906337 (10c), CCDC 1906338 (9c), CCDC 1906339 (6a), and
CCDC 1906340 (2) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[21] W. Schacht, D. Kaufmann, J. Organomet. Chem. 1987, 331, 139-152.
[22] For further details, see the Supporting Information and: S. N. Kessler, H.
A. Wegner, Org. Lett. 2010, 12, 4062-4065.
[12] a) M. Schlosser, C. Heiss, E. Marzi, R. Scopelliti, Eur. J. Org. Chem.
2006, 4398-4404; b) A. B. Bellan, P. Knochel, Angew. Chem. Int. Ed.
2019, 58, 1838-1841; Angew. Chem. 2019, 131, 1852-1856.
[23] M. Nakagawa, M. Ando, Agric. Biol. Chem. 1977, 41, 1975-1984.
[24] a) C. H. Burgos, T. E. Barder, X. Huang, S. L. Buchwald, Angew. Chem.
Int. Ed. 2006, 45, 4321-4326; Angew. Chem. 2006, 118, 4427-4432; b)
L. Salvi, N. R. Davis, S. Z. Ali, S. L. Buchwald, Org. Lett. 2012, 14, 170-
173.
[13] For further details, see the Supporting Information.
This article is protected by copyright. All rights reserved.