662 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 3
Popowycz et al.
Niemann-Pick Type C mice. Am. J. Pathol. 2004, 165, 843–853. (g)
Wang, J.; Liu, S.; Fu, Y.; Wang, J. H.; Lu, Y. Cdk5 activation induces
hippocampal CA1 cell death by directly phosphorylating NMDA
receptors. Nat. Neurosci. 2003, 6, 1039–1047. (h) Di Giovanni, S.;
Movsesyan, V.; Ahmed, F.; Cernak, I.; Schinelli, S.; Stoica, B.; Faden,
A. I. Cell cycle inhibition provides neuroprotection and reduces glial
proliferation and scar formation after traumatic brain injury. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 8333–8338. (i) Pareek, T. K.; Keller, J.;
Kesavapany, S.; Pant, H. C.; Iadarola, M. J.; Brady, R. O.; Kulkani,
A. B. Cyclin-dependent kinase 5 activity regulates pain signaling. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 791–796. (j) Pareek, T. K.; Keller,
J.; Kesavapany, S.; Agarwal, N.; Kuner, R.; Pant, H. C.; Iadarola,
M. J.; Brady, R. O.; Kulkarni, A. B. Cyclin-dependent kinase 5
modulates nociceptive signaling through direct phosphorylation of
transient receptor potential vanilloid 1. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 660–665. (k) Gherardi, D.; D’Agati, V.; Chu, T.-H. T.;
Barnett, A.; Gianella-Borradori, A.; Gelman, I. H.; Nelson, P. J.
Reversal of collapsing glomerulopathy in mice with the cyclin-
dependent kinase inhibitor CYC202. J. Am. Soc. Nephrol. 2004, 15,
1212–1222. (l) Griffin, S. V.; Krofft, R. D.; Pippin, J. W.; Shankland,
S. J. Limitation of podocyte proliferation improves renal function in
experimental crescentic glomerulonephritis. Kidney Int. 2005, 67, 977–
986. (m) Bukanov, N. O.; Smith, L. A.; Klinger, K. W.; Ledbetter,
S. R.; Ibraghimov-Beskrovnaya, O. Long-lasting arrest of murine
polycystic kidney disease with CDK inhibitor Roscovitine. Nature
2006, 444, 949–952. (n) Price, P. M.; Yu, F.; Kaldis, P.; Aleem, E.;
Nowak, G.; Safirstein, R. L.; Megyesi, J. Dependence of cisplatin-
induced cell death in vitro and in vivo on cyclin-dependent kinase 2.
J. Am. Soc. Nephrol. 2006, 17, 2434–2442. (o) Rossi, A. G.; Sawatzky,
D. A.; Walker, A.; Ward, C.; Sheldrake, T. A.; Riley, N. A.; Caldicott,
A.; Martinez-Losa, M.; Walker, T. R.; Duffin, R.; Gray, M.; Crescenzi,
E.; Martin, M. C.; Brady, H. J.; Savill, J. S.; Dransfield, I.; Haslett,
C. Cyclin-dependent kinase inhibitors enhance the resolution of
inflammation by promoting inflammatory cell apoptosis. Nat. Med.
2006, 12, 1056–1064. (p) Wei, F.-Y.; Nagashima, K.; Ohshima, T.;
Saheki, Y.; Lu, Y.-F.; Matsushita, M.; Yamada, Y.; Mikoshiba, K.;
Seino, Y.; Matsui, H.; Tomizawa, K. Cdk5-dependent regulation of
glucose-stimulated insulin secretion. Nat. Med. 2005, 11, 1104–1108.
(q) Kitani, K.; Oguma, S.; Nishiki, T. I.; Ohmori, I.; Galons, H.;
Matsui, H.; Meijer, L.; Tomizawa, K. A Cdk5 inhibitor enhances the
induction of insulin secretion by exendin-4 both in vitro and in vivo.
J. Physiol. Sci. 2007, 57, 235–239. (r) Pumfery, A.; De La Fuente,
C.; Berro, R.; Nekhai, S.; Kashanchi, F.; Chao, S.-H. Potential use of
pharmacological cyclin-dependent kinase inhibitors as anti-HIV
therapeutics. Curr. Pharm. Des. 2006, 12, 1949–1961. (s) Doerig, C.;
Billker, O.; Pratt, D.; Endicott, J. Protein kinases as targets for
antimalarial intervention: Kinomics, structure-based design, transmis-
sion-blockade, and targeting host cell enzymes. Biochim. Biophys. Acta
2005, 1754, 132–150.
reader (Perkin-Elmer). The average luminescence value was
calculated on 6 wells for each cell line. After 72 h, a Vialight
assay was performed on all test plates and on the control plate.
In Vivo Antitumor Activity. Experiments to evaluate the
antitumor activity of compound 7a were carried out essentially
as previously described14,19 under protocols approved by the
Georgetown University Animal Care and Use Committee, using
immunodeficient, male (5-6 weeks old) athymic nude (BALB/c
nu/nu) mice purchased from the National Cancer Institute.20
Mice were injected sc into the right posterior flank with 4 ×
106 A4573 Ewing’s sarcoma cells in 100 µL of Matrigel
basement membrane matrix (BD Biosciences, San Jose, Cali-
fornia). Once tumors reached a mean volume of about 195 mm3,
mice were randomized into three groups (six animals per group)
and treatment was initiated. Experimental groups were treated
with compound 7a or (R)-roscovitine, dissolved in DMSO, and
administered as a single daily ip injection, at a dose of 25 or
50 mg/kg, respectively, for 5 days. The control group received
ip injections of DMSO following an identical schedule. Tumor
growth was followed for up to 4 weeks after the first injection.
Tumor volumes were calculated by the formula V ) (1/2)a ×
b2, where a is the longest tumor axis, and b is the shortest tumor
axis. Whenever tumors reached the maximum volume allowed
by institutional tumor burden guidelines, animals were sacrificed
by asphyxiation with CO2. Tumors were immediately excised
from euthanized animals and measured. Data are given as mean
values ( SD. Statistical analysis of differences between groups
was performed by a one-way ANOVA, followed by an unpaired
Student’s t test.
Acknowledgment. This research was supported by grants
from the EEC (FP6-2002-Life Sciences & Health, PRO-
KINASE Research Project) (L.M.), the “Cance´ropole Grand-
Ouest” grant (L.M.), from the “Institut National du Cancer”
(INCa), Cancer De´tection d’Innovations 2006 (L.M.), from the
“Ligue Nationale contre le Cancer” (L.M.), and by U.S. NIH
grant PO1-CA74175 (V.N.). K.B. was supported by a fellowship
from the “Ministe`re de la Recherche” and from the “Association
pour la Recherche sur le Cancer”. We are grateful to J. Boix
for the SH-SY5Y cell line. We thank the National Cancer
Institute (Bethesda, MD) for the antitumor tests reported in this
paper.
(2) Knockaert, M.; Greengard, P.; Meijer, L. Pharmacological inhibitors
of cyclin-dependent kinases. Trends Pharmacol. Sci. 2002, 123, 417–
425.
(3) Sharma Sapra, P.; Sharma, R.; Tyagi, R. Inhibitors of cyclin dependent
kinases: useful targets for cancer treatment. Curr. Cancer Drug Targets
2008, 8, 53–75.
(4) Malumbres, M.; Pevarello, P.; Barbacid, M.; Bischoff, J. R. CDK
inhibitors in cancer therapy: what is next? Trends Pharmacol. Sci.
2008, 29, 16–21.
(5) Meijer, L.; Raymond, E. Roscovitine and other purines as kinase
inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res.
2003, 36, 417–425.
Supporting Information Available: Elemental analyses; NCI
60 mean graphs data for 7a; NCI 60 mean graphs data for (R)-
roscovitine; the effects of (R)-roscovitine (A) and 7a (B) on growth
of six human tumor cell lines (A549, PC3, Hela, 293T, Raji, and
U937). This material is available free of charge via the Internet at
(6) Meijer; L.; Bettayeb, K.; Galons, H. (R)-Roscovitine (CYC202,
Seliciclib). In Inhibitors of Cyclin-Dependent Kinases as Anti-tumor
Agents; Enzyme Inhibitors Series, Volume 3Smith, P. J., Yue, E. W.,
Eds.; CRC Press: Boca Raton, FL, 2006; Chapter 9, pp 187-226.
(7) (a) Gray, N. S.; Wodicka, L.; Thunnissen, A.-M. W. H.; Norman,
T. C.; Kwon, S.; Espinoza, F. H.; Morgan, D. O.; Barnes, G.; LeClerc,
S.; Meijer, L.; Kim, S.-H.; Lockhart, D. J.; Schultz, P. G. Exploiting
chemical libraries, structure, and genomics in the search for kinase
inhibitors. Science 1998, 281, 533–538. (b) Chang, Y.-T.; Gray, N. S.;
Rosania, G. R.; Sutherlin, D. P.; Kwon, S.; Norman, T. C.; Sarohia,
R.; Leost, M.; Meijer, L.; Schultz, P. G. Synthesis and application of
functionally diverse 2,6,9-trisubstituted purine libraries as CDK
inhibitors. Chem. Biol. 1999, 6, 361–375.
(8) (a) Patani, G. A.; LaVoie, E. J. Bioisosterism: a rational approach in
drug design. Chem. ReV. 1996, 96, 3147–3176. (b) Moreira Lima, L.;
Barreiro, E. J. Bioisosterism: a useful strategy for molecular modifica-
tion and drug design. Curr. Med. Chem. 2005, 12, 23–49.
(9) Raboisson, P.; Schultz, D.; Muller, C.; Reimund, J.-M.; Pinna, G.;
Mathieu, R.; Bernard, P.; Do, Q.-T.; DesJarlais, R. L.; Justiano, H.;
Lugnier, C.; Bourguignon, J.-J. Cyclic nucleotide phosphodiesterase
type 4 inhibitors: evaluation of pyrazolo[1,5-a]-1,3,5-triazine ring
References
(1) (a) Shapiro, G. I. Cyclin-dependent kinase pathways as targets for
cancer treatment. J. Clin. Oncol. 2006, 24, 1770–1783. (b) Du, J.;
Widlund, H. R.; Horstmann, M. A.; Ramaswamy, S.; Ross, K.; Huber,
W. E.; Nishimura, E. K.; Golub, T. R.; Fisher, D. E. Critical role of
CDK2 for melanoma growth linked to its melanocyte-specific tran-
scriptional regulation by MITF. Cancer Cell 2004, 6, 565–576. (c)
Alvi, A. J.; Austen, B.; Weston, V. J.; Fegan, C.; MacCallum, D.;
Gianella-Borradori, A.; Lane, D. P.; Hubank, M.; Powell, J. E.; Wei,
W.; Taylor, A. M. R.; Moss, P. A. H.; Stankovic, T. A novel CDK
inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-
dependent apoptosis in B-CLL by down-regulation of genes involved
in transcription regulation and survival. Blood 2005, 105, 4484–4491.
(d) Cruz, J. C.; Tsai, L. H. Cdk5 deregulation in the pathogenesis of
Alzheimer‘s disease. Trends Mol. Med. 2004, 10, 452–458. (e) Smith,
P. D.; O’Hare, M. J.; Park, D. S. CDKs: taking on a role as mediators
of dopaminergic loss in Parkinson’s disease. Trends Mol. Med. 2004,
10, 445–451. (f) Zhang, M.; Li, J.; Chakrabarty, P.; Bu, B.; Vincent,
I. Cyclin-dependent kinase inhibitors attenuate protein hyper-phos-
phorylation, cytoskeletal lesion formation, and motor defects in