(S)-3-((R)-Hydroxy(3-nitrophenyl)methyl)dihydro-2H -thio-
pyran-4(3H)-one, 12e-anti. Yield 76%. 1H NMR (400 MHz,
CDCl3) d: 8.24-8.16 (m, 2H), 7.70 (d, J = 7.7 Hz, 1H), 7.55 (d,
J = 7.9 Hz, 1H), 5.04 (dd, J = 8.2, 4.0 Hz, 1H), 3.69 (d, J = 4.0
Hz, 1H), 3.07–2.95 (m, 3H), 2.85–2.76 (m, 2H), 2.68 (dd, J = 13.7,
11.0 Hz, 1H), 2.52 (m, 1H). 13C NMR (100 MHz, CDCl3) d: 211.4,
148.4, 142.6, 133.0, 129.6, 123.2, 122.0, 73.2, 59.4, 44.8, 32.8, 30.8.
HPLC: Chiralpak AD-H column, hexane–i-PrOH 90 : 10, flow
rate 1 mL min-1; tR (anti-major) = 63.2 min; tR (anti-minor) =
89.1 min.
Acknowledgements
This work was supported by Nanyang Technological University
and the Ministry of Education, Singapore. We also thank Dr
Roderick W. Bates and Dr Guan-Leong Chua for discussion and
help in the preparation of this manuscript.
References
1 B. M. Kim, S. F. Williams, and S. Masamune, in Comprehensive Organic
Synthesis, ed. B. M. Trost, I. Fleming and C. H. Heathcock, Pergamon,
Oxford, 1991, vol. 2, p. 229.
(S)-3-((R)-Hydroxy(3-nitrophenyl)methyl)dihydro-2H-pyran-4-
(3H)-one, 12f-anti. Yield 73%. 1H NMR (400 MHz, CDCl3) d:
7.89 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.66 (t, J =
7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 5.55 (d, J = 6.9 Hz, 1H),
3.83 (br, 1H), 3.18–3.13 (m, 1H), 3.01–2.95 (m, 3H), 2.80–2.74 (m,
2H), 2.62–2.58 (m, 1H). 13C NMR (100 MHz, CDCl3) d: 211.4,
148.5, 135.9, 133.4, 128.9, 128.8, 124.3, 69.3, 59.4, 45.1, 33.2, 30.7.
HPLC: Chiralpak AD-H column, hexane–i-PrOH 90 : 10, flow
rate 1 mL min-1; tR (anti-minor) = 24.3 min; tR (anti-major) =
30.1 min.
2 (a) B. M. Trost and H. Ito, J. Am. Chem. Soc., 2000, 122, 12003; (b) B.
M. Trost, E. R. Silcoff and H. Ito, Org. Lett., 2001, 3, 2497; (c) B. M.
Trost, S. Shin and J. A. Scalafani, J. Am. Chem. Soc., 2005, 127, 8602;
(d) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, Angew.
Chem., Int. Ed. Engl., 1997, 36, 1871; (e) N. Yoshikawa, N. Kumagai,
S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki and M. Shibasaki, J.
Am. Chem. Soc., 2001, 123, 2246; (f) N. Kumagai, S. Matsunaga, T.
Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi and M.
Shibasaki, J. Am. Chem. Soc., 2003, 125, 2169; (g) R. Fernandez Lopez,
J. Kofoed, M. Machuqueiro and T. Darbre, Eur. J. Org. Chem., 2005,
24, 5268.
3 (a) B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc.,
2000, 122, 2395; (b) W. Notz and B. List, J. Am. Chem. Soc., 2000, 122,
7386.
(S)-3-((R)-Hydroxy(2-nitrophenyl)methyl)dihydro-2H -thio-
pyran-4(3H)-one, 12g-anti. Yield 66%. 1H NMR (400 MHz,
CDCl3) d: 8.21-8.17 (m, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.57 (t, J =
8.0 Hz, 1H), 4.97 (d, J = 8.2 Hz, 1H), 4.24–4.19 (m, 1H), 3.89 (brs,
1H), 3.79–3.70 (m, 2H), 3.45 (t, J = 11.3 Hz, 1H), 2.96–2.89 (m,
1H), 2.73–2.65 (m, 1H), 2.56–2.51 (m, 1H). 13C NMR (100 MHz,
CDCl3) d: 209.4, 148.4, 142.3, 132.7, 129.7, 123.3, 121.6, 71.3,
69.8, 68.3, 57.5, 42.9. HPLC: Chiralpak OD-H column, hexane–
i-PrOH 95 : 5, flow rate 1 mL min-1; tR (anti-major) = 93.8 min;
tR (anti-minor) = 128.4 min.
4 (a) Z. Tang, F. Jiang, L.-T. Yu, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang
and Y.-D. Wu, J. Am. Chem. Soc., 2003, 125, 5262; (b) Z. Tang, Z.-H.
Yang, L.-F. Cun, L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Org. Lett.,
2004, 6, 2285; (c) Z. Tang, F. Jiang, X. Cui, L.-Z. Gong, A.-Q. Mi,
Y.-Z. Jiang and Y.-D. Wu, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
5755; (d) H.-M. Guo, L.-F. Cun, L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang,
Chem. Commun., 2005, 1450; (e) G. Guillena, M. Hita and C. Najera,
Tetrahedron: Asymmetry, 2006, 17, 729; (f) D. Gryko, B. Kowalczyk
and L. Zawadzki, Synlett, 2006, 7, 1059; (g) M. Raj, G. Vishnumaya,
K. Sandeep and V. K. Singh, Org. Lett., 2006, 8, 4097; (h) A. J. A. Cobb,
D. M. Shawn and S. V. Ley, Synlett, 2004, 558.
5 P. Diner and M. Amedjkouh, Org. Biomol. Chem., 2006, 4,
2091.
(S)-3-((R)-Hydroxy(2-nitrophenyl)methyl)dihydro-2H-pyran-4-
(3H)-one, 12h-anti. Yield 75%. 1H NMR (400 MHz, CDCl3) d:
7.90 (dd, J = 8.4, 1.2 Hz, 1H), 7.80 (dd, J = 8.4, 1.2 Hz, 1H)
7.68–7.63 (m, 1H), 7.48–7.42 (m, 1H), 5.46 (d, J = 6.6 Hz, 1H),
4.23–4.16 (m, 1H), 4.03 (br, 1H), 3.93–3.87 (m, 1H), 3.82–3.71
(m, 2H), 3.08–3.00 (m, 1H), 2.71–2.61 (m, 1H), 2.53–2.46 (m,
1H). 13C NMR (100 MHz, CDCl3) d: 209.5, 148.0, 136.0, 133.5,
128.8, 128.7, 124.3, 70.4, 68.3, 67.3, 57.8, 43.2. HPLC: Chiralpak
OD-H column, hexane–i-PrOH 97 : 3, flow rate 1 mL min-1; tR
(anti-major) = 89.9 min; tR (anti-minor) = 99.1 min.
6 W. Marais and C. W. Holzapfel, Synth. Commun., 1998, 28,
3681.
7 A. Couture, E. Deniau, S. Lebrun, P. Grandclaudon and J.-F. Carpen-
tier, J. Chem. Soc., Perkin Trans. 1, 1998, 1403.
8 J. D. Chisholm and D. L. Van Vranken, J. Org. Chem., 2000, 65,
7541.
9 M. K. Gurjar and S. M. Pawar, Carbohydr. Res., 1987, 159,
325.
10 A. V. Malkov, J. B. Hand and P. Kocovsky, Chem. Commun., 2003, 15,
1948.
11 H. Takahashi, M. Hattori, M. Chiba, T. Morimoto and K. Achiwa,
Tetrahedron Lett., 1986, 27, 4470.
12 T. J. Peelen, Y. Chi and S. H. Gellman, J. Am. Chem. Soc., 2005, 127,
11598.
13 (a) S. Bahmanyar and K. N. Houk, J. Am. Chem. Soc., 2001, 123,
11273; (b) S. Bahmanyar and K. N. Houk, J. Am. Chem. Soc., 2001,
123, 12911.
Computational details
DFT calculations were carried out with the Gaussian 03 package.14
The equilibrium and transition structures were fully optimized by
the B3LYP15 method using the 6-31G(d) basis set.16 All stationary
structures obtained were confirmed to be a true minimum or
saddle point by harmonic frequency calculations at the same level
of theory. Transition states were further confirmed by intrinsic
reaction coordinate (IRC) calculations,17 whereby they were shown
to connect the relevant reactants and products.
Solvation energies were estimated using solvation model
CPCM18 as implemented in Gaussian 03, for chloroform,
dichloromethane, dimethyl sulfoxide, and tetrahydrofuran without
acid additive, and for dimethyl sulfoxide with AcOH. Gas-phase
stationary geometries were used for single-point calculations in
the various solvents.
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision D.01), Gaussian, Inc., Wallingford, CT, 2004.
4002 | Org. Biomol. Chem., 2008, 6, 3997–4003
This journal is
The Royal Society of Chemistry 2008
©