T. Takahashi et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3511–3516
3515
Table 3
Rat Y5 receptor binding affinities, inhibitory effect in D-Trp34NPY-induced food intake, and plasma, brain and CSF exposure data in rats
Minimum effective dose (mg/kg po)b
Brain, plasma and CSF levels at 2 h after 10 mpk po in ratsc
a
Compounds
rY5 agbinding IC50 (nM)
Plasma level (lM)
Brain level, nmol/g tissue
CSF level (lM)
5c
6a
9d
1.7
0.67
1.3
3
3
>30
2.98
3.86
1.42
2.92
0.26
1.09
0.10
0.13
<0.01
a
In vitro data in nM are the average of at least two experiments.
b
c
Inhibitory effect in D
-Trp34NPY-induced food intake.
n = 3.
Acknowledgements
We thank Dr. Arthur A. Patchett, Dr. Lex H. T. Van der Ploeg and
Dr. Douglas J. MacNeil for their suggestions and discussion on the
privileged structures and the NPY Y5 receptor antagonist program.
We are grateful to Dr. Peter T. Meinke, Merck Research Laborato-
ries, for his critical reading of the manuscript.
References and notes
1. Tatemoto, K.; Mutt, V. Nature 1980, 285, 417.
2. Tatemoto, K.; Carlquist, M.; Mutt, V. Nature 1982, 296, 659.
3. Clark, J. T.; Kalra, P. S.; Crowley, W. R.; Kalra, S. P. Endocrinology 1984, 115, 427.
4. Mccarthy, H. D.; Mckibbin, P. E.; Holloway, B.; Mayers, R.; Williams, G. Life Sci.
1991, 49, 1491.
5. Eva, C.; Oberto, A.; Sprengel, R.; Genazzani, E. FEBS Lett. 1992, 314, 285.
6. Herzog, H.; Hort, Y. J.; Ball, H. J.; Hayes, G.; Shine, J.; Selbie, L. A. Proc. Natl. Acad.
Sci. U.S.A. 1992, 89, 5794.
Figure 3. Receptor occupancy data in mice.
7. Krause, J.; Eva, C.; Seeburg, P. H.; Sprengel, R. Mol. Pharmacol. 1992, 41, 817.
8. Larhammar, D.; Blomqvist, A. G.; Yee, F.; Jazin, E.; Yoo, H. Y.; Wahlestedt, C. J.
Biol. Chem. 1992, 267, 10935.
9. Bard, J. A.; Walker, M. W.; Branchek, T. A.; Weinshank, R. L. J. Biol. Chem. 1995,
270, 26762.
food intake assay,
jected at 1 h after oral administration of the compounds, and food
intake was measured for 2 h after the
-Trp34NPY injection. Thus,
D
-Trp34NPY was intracerebroventricularly in-
D
10. Gerald, C.; Walker, M. W.; Vaysse, P. J. J.; He, C. G.; Branchek, T. A.; Weinshank,
R. L. J. Biol. Chem. 1995, 270, 26758.
11. Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.;
Statnick, M. A.; Gadski, R. A.; Gehlert, D. R.; Larhammar, D. J. Biol. Chem. 1995,
270, 29123.
12. Rose, P. M.; Fernandes, P.; Lynch, J. S.; Frazier, S. T.; Fisher, S. M.; Kodukula, K.;
Kienzle, B.; Seethala, R. J. Biol. Chem. 1995, 270, 22661.
13. Gehlert, D. R.; Beavers, L. S.; Johnson, D.; Gackenheimer, S. L.; Schober, D. A.;
Gadski, R. A. Mol. Pharmacol. 1996, 49, 224.
14. Gerald, C.; Walker, M. W.; Criscione, L.; Gustafson, E. L.; BatzlHartmann, C.;
Smith, K. E.; Vaysse, P.; Durkin, M. M.; Laz, T. M.; Linemeyer, D. L.; Schaffhauser,
A. O.; Whitebread, S.; Hofbauer, K. G.; Taber, R. I.; Branchek, T. A.; Weinshank,
R. L. Nature 1996, 382, 168.
15. Gregor, P.; Millham, M. L.; Feng, Y.; Decarr, L. B.; McCaleb, M. L.; Cornfield, L. J.
FEBS Lett. 1996, 381, 58.
the exposure data at 2 h reasonably represents exposure during
the food intake assay. Compound 6a showed lowest brain level
among the three compounds while 6a showed as high CSF level
as 5c. In contrast, 9d showed a relatively high brain level, one
third of 5c but 4 times higher than 6a, but very low CSF levels
of less than 0.01 lM. In the D
-Trp34NPY-induced food intake as-
say, 9d did not inhibit the food intake even at 30 mg/kg while
6a potently inhibited food intake comparable to 5c, suggesting
that the CSF exposure level is a better indicator than the brain
exposure level to predict Y5-mediated pharmacological effect
and brain Y5 receptor occupancy.
Compound 5c was efficacious at 10 mg/kg once daily oral
treatment in the diet-induced obesity mice model as reported
separately.47 In contrast, 6a was not efficacious even at 30 mg/
kg in the same model (data not shown). We compared the two
compounds for their brain Y5 receptor occupancy after oral
administration in mice.48 Compound 5c showed almost full recep-
tor occupancy until 16 h after 10 mg/kg oral administration. In
contrast, 6a showed transient receptor occupancy under the same
conditions, suggesting that sustained receptor occupancy is
required to show the anti-obesity effect in the DIO mice model
(Fig. 3).
16. Gregor, P.; Feng, Y.; Decarr, L. B.; Cornfield, L. J.; McCaleb, M. L. J. Biol. Chem.
1996, 271, 27776.
17. Hu, Y. H.; Bloomquist, B. T.; Cornfield, L. J.; Decarr, L. B.; FloresRiveros, J. R.;
Friedman, L.; Jiang, P. L.; LewisHiggins, L.; Sadlowski, Y.; Schaefer, J.; Velazquez,
N.; McCaleb, M. L. J. Biol. Chem. 1996, 271, 26315.
18. Matsumoto, M.; Nomura, T.; Momose, K.; Ikeda, Y.; Kondou, Y.; Akiho, H.;
Togami, J.; Kimura, Y.; Okada, M.; Yamaguchi, T. J. Biol. Chem. 1996, 271, 27217.
19. Weinberg, D. H.; Sirinathsinghji, D. J. S.; Tan, C. P.; Shiao, L. L.; Morin, N.; Rigby,
M. R.; Heavens, R. H.; Rapoport, D. R.; Bayne, M. L.; Cascieri, M. A.; Strader, C.
D.; Linemeyer, D. L.; MacNeil, D. J. J. Biol. Chem. 1996, 271, 16435.
20. Daniels, A. J.; Matthews, J. E.; Slepetis, R. J.; Jansen, M.; Viveros, O. H.; Tadepalli,
A.; Harrington, W.; Heyer, D.; Landavazo, A.; Leban, J. J.; Spaltenstein, A. Proc.
Natl. Acad. Sci. U.S.A. 1995, 92, 9067.
21. Kanatani, A.; Ishihara, A.; Asahi, S.; Tanaka, T.; Ozaki, S.; Ihara, M. Endocrinology
1996, 137, 3177.
22. Hipskind, P. A.; Lobb, K. L.; Nixon, J. A.; Britton, T. C.; Bruns, R. F.; Catlow, J.;
DieckmanMcGinty, D. K.; Gackenheimer, S. L.; Gitter, B. D.; Iyengar, S.; Schober,
D. A.; Simmons, R. M. A.; Swanson, S.; Zarrinmayeh, H.; Zimmerman, D. M.;
Gehlert, D. R. J. Med. Chem. 1997, 40, 3712.
23. Kanatani, A.; Ito, J.; Ishihara, A.; Iwaasa, H.; Fukuroda, T.; Fukami, T.; MacNeil,
D. J.; Van der Ploeg, L. H. T.; Ihara, M. Regul. Pept. 1998, 75-6, 409.
24. Kask, A.; Rago, L.; Harro, J. Br. J. Pharmacol. 1998, 124, 1507.
25. Marsh, D. J.; Hollopeter, G.; Kafer, K. E.; Palmiter, R. D. Nat. Med. 1998, 4, 718.
26. Pedrazzini, T.; Seydoux, J.; Kunstner, P.; Aubert, J. F.; Grouzmann, E.; Beermann,
F.; Brunner, H. R. Nat. Med. 1998, 4, 722.
In summary, we identified a series of spiro[3-oxoisobenzofura-
ne-1(3H),40-piperidine]–urea derivatives that are potent, selective
and orally active NPY Y5 receptor antagonists. In particular, 5c
significantly inhibited
with a minimum effective dose of 3 mg/kg. The CSF exposure
level was useful indicator to predict efficacy in the rat
-Trp34NPY-induced food intake model. Compound 5c showed
D
-Trp34NPY-induced food intake in rats
a
D
sustained brain Y5 receptor occupancy in mice, and oral once-dai-
ly administration of 5c at 10 mg/kg was efficacious in diet-in-
duced obesity mice. Thus, 5c was an attractive candidate for
clinical development.
27. Wieland, H. A.; Engel, W.; Eberlein, W.; Rudolf, K.; Doods, H. N. Br. J. Pharmacol.
1998, 125, 549.
28. Inui, A. Trends Pharmacol. Sci. 1999, 20, 43.