dideoxy-1,4-imino-L-lyxitol (5)8 (Figure 2). More elaborate
members include Swainsonine9 (Figure 1) (whose properties
include the inhibition of both lysosomal R-mannosidase10
and mannosidase II11), the antibiotic Anisomycin (6),12
Broussonetinine A (7),13 and the potent inhibitor of ꢀ-ga-
lactosidase and R-mannosidase, Gualamycin (8)14 (Figure
2).
and all employ standard protecting group manipulations. The
use of protecting groups has the disadvantage of requiring
organic solvents for reaction, workup, and purification, which
is environmentally deleterious. In addition, extensive protect-
ing group manipulations lead to lengthy syntheses requiring
both a protection and deprotection step per protecting group,
resulting in reduced atom economy, and hence reaction
efficiency. In view of this, we investigated a protecting-group
free synthesis of polyhydroxylated pyrrolidine alkaloids.
It has previously been reported that cyclic carbamates can
be prepared, in modest yield, from the reaction of acylic
amines equipped with a halogen-leaving group and either
tetraethylammonium bicarbonate17 or sodium carbonate.18
In view of this, we postulated that the imino-sugars 9 could
be prepared via an iodine-promoted halocyclization/in situ
carbonylation reaction to give carbamates 10, which could
be subsequently hydrolyzed (Scheme 1). The linear amino-
Figure 2. Compounds containing the 2,3-cis-disubstituted hydroxy-
pyrrolidine core.
Scheme 1. Retrosynthesis for the Formation of
Polyhydroxylated Pyrrolidines via Cyclic Carbamates
Many strategies for the synthesis of cis-2-substituted-3-
hydroxypyrrolidines (such as 1, 4, and 5) have been
reported.15,16 Though elegant and creative, many of these
strategies are lengthy, some show poor diastereoselectivity,
(5) Fleet, G. W. J.; Smith, P. W.; Evans, S. V.; Fellows, L. E. J. Chem.
Soc., Chem. Commun. 1984, 1240–1241.
alcohols 11 are in turn accessible via reductive amination
of hydroxyaldehydes, themselves obtained following Vasella
reaction of methyl iodofuranosides 12,19 prepared in two
steps from pentose monosaccharides. Thus, the chiral
information embedded within the pentose carbohydrate
precursors would be translated into the final products and,
without the use of protecting groups, the complete synthesis
will be amenable to chemistry in aqueous media.
(6) Eis, M. J.; Rule, C. J.; Wu¨rzburg, B. A.; Ganem, B. Tetrahedron
Lett. 1985, 26, 5397–5398.
(7) Saludes, J. P.; Lievens, S. C.; Molinski, T. F. J. Nat. Prod. 2007,
70, 436–438.
(8) Nash, R. J.; Bell, E. A.; Williams, J. M. Phytochemistry 1985, 24,
1620–1622.
(9) Guengerich, F. P.; DimMari, S. J.; Bromquist, H. P. J. Am. Chem.
Soc. 1973, 95, 2055.
(10) Liao, Y. F.; Lal, A.; Moreman, K. W. J. Biol. Chem. 1996, 271,
28348–28358.
The synthesis of the hydroxypyrrolidines starts with the
conversion of D-xylose (13, Scheme 2) into its methyl
(11) Kaushal, G. P.; Szumilo, T.; Pastuszak, I.; Elbein, A. D. Biochem-
istry 1990, 29, 2168–2176.
(12) Sobin, B. A.; Tanner, F. W., Jr. J. Am. Chem. Soc. 1954, 76, 4053.
(13) Shibano, M.; Kitagawa, S.; Nakamura, S.; Akazawa, N.; Kusano,
G. Chem. Pharm. Bull. 1997, 45, 700–705.
(14) Tsuchiya, K.; Kobayashi, S.; Harada, T.; Kurokawa, T.; Nakagawa,
T.; Shimada, N.; Kobayashi, K. J. Antibiot. 1995, 48, 626–629.
(15) La Fera, B.; Nicotra, F. Synthetic Methods for the Preparation of
Iminosugars. In Iminosugars as Glycosidase Inhibitors: Norjirimycin and
Beyond; Stu¨tz, A. E., Ed.; Wiley-VCH: Weinheim, Germany, 1999; Chapter
4, pp 68-92.
Scheme 2. Synthesis of cis-2,3-Disubstituted
Hydroxypyrrolidines Using Novel Annulation Methodology
(16) For recent examples see: (a) Merino, P.; Delso, I.; Tejero, T.;
Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A. Eur. J. Org.
Chem. 2008, 292, 9–2947. (b) Huang, Y.; Dalton, D. R.; Carroll, P. J. J.
Org. Chem. 1997, 62, 372–376. (c) D´ıez, D.; Templo Bebe´itez, M.; Gil,
M. J.; Moro, R. F.; Marcos, I. S.; Garrido, N. M.; Basabe, G. P. Synthesis
2005, 4, 565–568. (d) Marradi, M.; Cicchi, S.; Delso, J. I.; Rosi, L.; Tejero,
T.; Merino, P.; Goti, A. Tetrahedron Lett. 2005, 46, 1287–1290. (e) Davis,
A. S.; Gates, N. J.; Lindsay, K. B.; Tang, M.; Pyne, S. G. Synlett 2004, 1,
49–52. (f) Lindsey, K. B.; Pyne, S. G. Aust. J. Chem. 2004, 57, 669–672.
(g) Espelt, L.; Parella, T.; Bujons, J.; Solans, C.; Joglar, J.; Delgado, A.;
Clape´s, P. Chem.-Eur. J. 2003, 9, 4887–4899. (h) Sawada, D.; Takahashi,
H.; Ikegami, S. Tetrahedron Lett. 2003, 44, 3085–3088. (i) Ghavami, A.;
Johnston, B. D.; Maddess, M. D.; Chinapoo, S. M.; Jensen, M. T.; Svensson,
B.; Pinto, B. M. Can. J. Chem. 2002, 80, 937–942. (j) Sugiura, M.; Hagio,
H.; Kobayashi, S. HelVetica Chemica Acta. 2002, 85, 3678–3691. (k) Lei,
A. L.; Liu, G.; Lu, X. J. Org. Chem. 2002, 67, 974–980. (l) Wang, C.-C.;
Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett. 2002, 4, 847–849. (m)
Garner, P.; Dogan, O.; Youngs, W. J.; Kennedy, V. O.; Protasiewicz, J.;
Zaniewski, R. Tetrahedron 2001, 57, 71–85. (n) Lee, B.; Jeong, I.-L.; Yang,
furanoside by a Fisher glycosidation and treatment of the
crude product with iodine and triphenylphosphine to give
(17) Inesi, A.; Mucciante, V.; Rossi, L. J. Org. Chem. 1998, 63, 1337–
1338.
M. S.; Choi, S. U.; Park, K. H. Synthesis 2000, 9, 1305–1309
.
(18) Hassner, A.; Burke, S. S. Tetrahedron 1974, 30, 2613–2621.
536
Org. Lett., Vol. 11, No. 3, 2009