6350
L. Lin et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6348–6351
Surprisingly, the benzoyl protected derivative 14 showed more po-
tent inhibition, with an IC50 value of about 1 M. Apparently, all
benzoyl protected compounds (18, 22, 23, 34 and 35) displayed
better inhibition than compound I, with the 2-carbamoylbenzoic
acid derivative 23 as the best inhibitor (IC50 = 0.77 lM). Presence
of 2-carbamoylbenzoic acid function on sugar ring improves
slightly the inhibition constant (18 vs. 34, 23 vs. 22) (See Table 1).
In summary, a series of b-C-glycosiduronic acid quinones and b-
C-glycosyl compounds have been prepared. Benzoyl protected sug-
ars exhibited good inhibitory activities against PTP1B with IC50 in
micromolar ranges. These results demonstrated the potential of
C-glycosyl compounds as a new class of small molecular inhibitors
of PTP1B.
NH2
O
OMe
OMe
NHBz
O
OMe
OMe
a
l
BzO
BzO
+
d
HO
17
31
BzO
OBz
30
OBz
31
O
O
NHBz
NHBz OMe
O
b, c
O
AcO
AcO
AcO
AcO
OAc
33
OAc
32
OMe
NHBz OMe
O
e
d
AcO
BzO
31
31
OBz
34
OMe
O
NHBz
O
Acknowledgments
HO
BzO
OBz
35
O
L.L. thanks the Ecole Normale Supérieure de Cachan for a Doc-
torate fellowship. This work was supported by CNRS, ENS Cachan,
National Natural Science Foundation of China (Grant No.
20876045) and Shanghai Science and Technology Community
(No. 074107018).
Scheme 4. Reagents and conditions: (a) Ph3P, THF, H2O, 31: 47%; (b) MeONa,
MeOH; (c) Ac2O, 81% (d) CAN, CH3CN, H2O, 33: 99%, 35: 77%; (e) Ac2O, pyr., 85%.
26, with the predominant formation of the transesterification
product 25. Subsequent mesylation allowed us to isolate the mes-
ylate 27 which was then transformed into 4-azido b-C-galactoside
28 with a SN2 mechanism.17 Treatment with phthalic anhydride
and PMe3 in CH2Cl2 afforded the 2-carbamoylbenzoic acid deriva-
tive 29.
References and notes
1. (a) Moller, D. E. Nature 2001, 414, 821; (b) Montalibet, J.; Kennedy, B. P. Drug
Discov. Today Ther. Strat. 2005, 2, 129.
2. (a) Byon, J. C. H.; Kusari, A. B.; Kusari, J. Mol. Cell. Biochem. 1998, 182, 101; (b)
Walchi, S.; Curchod, M. L.; Gobert, R. P.; Arkinstall, S.; Hooft van Huijsduijnen,
R. J. Biol. Chem. 2000, 275, 9792; (c) Cheng, A.; Dubé, N.; Gu, F.; Tremblay, M. L.
Eur. J. Biochem. 2002, 269, 1050.
Synthesis of 6-benzoylamino derivatives is described in Scheme
4. Staudinger reduction of azido function of 17 led to a mixture of
amine 30 contaminated with Ph3P@O and the transamidation
product 31 with a free hydroxyl group at 4-position. Structure of
31 was confirmed by RMN analysis of the 4-O-acetylated product
34.18 Treatment of 31 with MeONa followed by acetylation affor-
ded the compound 32 which was oxidized to the 1,4-benzoquinone
derivative 33 with CAN as oxidant. Direct CAN oxidation of 31 led
to the quinone 35 without affecting the 4-hydoxy group.
The effect of synthesized compounds on PTP1B was firstly stud-
3. (a) Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A. L.;
Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C. C.; Ramachandran, C.;
Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P. Science 1999, 283, 1544; (b)
Klaman, L. D.; Boss, O.; Peroni, O. D.; Kim, J. K.; Martino, J. L.; Zabolotny, J. M.;
Moghal, N.; Lubkin, M.; Kim, Y. B.; Sharpe, A. H.; Stricker-Krongrad, A.;
Schulman, G. I.; Neel, B. G.; Kahn, B. B. Mol. Cell. Biol. 2000, 20, 5479.
4. (a). Annu. Rev. Pharmacol. Toxicol. 2002, 42, 209; (b) Bialy, L.; Waldmann, H.
Angew. Chem. Int. Ed. 2005, 44, 3814; (c) Dewang, P. M.; Hsu, N.-M.; Peng, S.-Z.;
Li, W.-R. Curr. Med. Chem. 2005, 12, 1; (d) Lee, S.; Wang, Q. Med. Res. Rev. 2006,
1; (e) Liang, F.; Kumar, S.; Zhang, Z. Y. Mol. Biosyst. 2007, 308; (f) Zhang, S.;
Zhang, Z.-Y. Drug Discov. Today 2007, 12, 373; (g) Wan, Z.-K.; Follows, B.;
Kirincich, S.; Wilson, D.; Binnun, E.; Xu, W.; Joseph-McCarthy, D.; Wu, J.; Smith,
M.; Zhang, Y.-L.; Tam, M.; Erbe, D.; Tam, S.; Saiah, E.; Lee, J. Bioorg. Med. Chem.
Lett. 2007, 17, 2913; (h) Boustelis, I. G.; Yu, X.; Zhang, Z.-Y.; Borch, R. F. J. Med.
Chem. 2007, 50, 856; (i) Shrestha, S.; Bhattarai, B. R.; Chang, K. J.; Lee, K.-H.;
Cho, H. Bioorg. Med. Chem. Lett. 2007, 17, 2760; (j) Dixit, M.; Tripathi, B. K.;
Tamrakar, A. K.; Srivastava, A. K.; Kumar, B.; Goel, A. Bioorg. Med. Chem. 2007,
15, 727.
ied at 20 l
g/mL concentration.19,20 Except compounds 29, 32 and
33, all tested compounds showed good PTP1B inhibitory activity
(70.3–99.7%). Substitution of 6-OAc by 6-NHBz in compound I de-
press the potency (I vs. 33). The acetylated b-C-glycosiduronic acid
quinone derivatives 5, 6, 12 and 13 inhibited PTP1B with IC50 val-
ues from 16 to 28 lM. No significant difference can be observed
between gluco and galacto derivatives (5 vs. 6, 12 vs. 13). However,
5. Li, X. B. A.; Holmes, C. P.; Szardenings, A. K. Bioorg. Med. Chem. Lett. 2004, 4301.
6. Moran, E. J.; Sarshar, S.; Cargill, J. F.; Shahbaz, M. M.; Lio, A.; Mjalli, A. M. M.;
Armstrong, R. W. J. Am. Chem. Soc. 1995, 117, 10787.
7. Anderson, H. S. I. L. F.; Jeppesen, C. B.; Branner, S.; Norris, K.; Rasmussen, H. B.;
Moller, K. B.; Moller, N. P. H. J. Biol. Chem. 2000, 275, 7101.
these compounds are less effective than the parent compound I.
8. Liu, G.; Xin, Z.; Pei, Z.; Hajduk, P. J.; Abad-Zapatero, C.; Hutchins, C. W.; Zhao, H.;
Lubben, T. H.; Ballaron, S. J.; Haasch, D. L.; Kaszubsk, W.; Rondinone, C. M.;
Trevillyan, J. M.; Jirousek, M. R. J. Med. Chem. 2003, 46, 4232.
9. Larsen, S. D.; Barf, T.; Liljebris, C.; May, P. D.; Ogg, D.; O’Sullivan, T. J.; Palazuk, B.
J.; Schostarez, H. J.; Stevens, F. C.; Bleasdale, J. E. J. Med. Chem. 2002, 45, 598.
10. Xie, J.; Seto, C. T. Bioorg. Med. Chem. 2007, 15, 458.
11. (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545; (b) Bu, Y.; Linhardt, R. J.
Tetrahedron 1998, 54, 9913; (c) Xie, J. Recent Res. Dev. Org. Chem. 1999, 3, 505;
(d) Grugier, J.; Xie, J.; Duarte, I.; Valéry, J. M. J. Org. Chem. 2000, 65, 979; (e) Xie,
J.; Thellend, A.; Becker, H.; Vidal-Cros, A. Carbohydr. Res. 2001, 334, 177.
12. Praly, J.-P.; He, L.; Qin, B. B.; Tanoh, M.; Chen, G. R. Tetrahedron Lett. 2005, 46,
7081.
13. Takeshi, K.; Nobuyuki, O.; Susumu, S. Tetrahedron Lett. 1998, 39, 4537.
14. Compounds 5, 6, 12–14 were prepared according to the following procedure.
To a soln of 6-O-silylated b-C-aryl glycosides (0.1 mmol) in 2 mL of acetone,
Table 1
In vitro PTP1B inhibition results.
Inhibitiona (%)
Inhibition IC50
(
lM)
b
Compound
I
5
6
4.85
84.7
70.3
83.1
88.2
99.5
99.7
96.5
92.1
49.5
94.9
12.1
26.6
83.4
94.1
20.43 ( 5.23)
27.61 ( 4.08)
15.95 ( 0.49)
16.55 ( 0.84)
1.12 ( 0.03)
2.44 ( 0.20)
2.36 ( 0.22)
0.77 ( 0.09)
nd
4.13 ( 0.19)
nd
nd
4.52 ( 0.07)
5.27 ( 0.61)
12
13
14
18
22
23
29
31
32
33
34
35
was added dropwise 170
l
L of Jones reagent (2.2 g CrO3 in 3.5 M H2SO4) at
0 °C. After 20 h reaction, another 100
lL of Jones reagent was added and the
mixture was stirred for 20 h. This operation was repeated two times until that
TLC indicated the complete consumption of the starting material. The mixture
was diluted with water and then extracted with CH2Cl2 (3 Â 20 mL). The
organic layer was dried over MgSO4 and purified by preparative layer
chromatography (CH2Cl2: MeOH = 20:1). Compound 5: [a]D = À3.4 (c 0.3,
CHCl3); 1H NMR (300 MHz, CDCl3): d 7.25–6.71 (m, 3H), 5.74–5.10 (m, 4H),
3.86 (m, 1H), 2.00 (s, 9H). HRMS: calcd for C18H18O11: 433.0747; found: m/z
a
Values tested at 20
l
g/mL concentration.
b
433.0753. Compound 6: [a]
D = À20.0 (c 0.26, CHCl3); 1H NMR (300 MHz,
Values are means of three experiments, standard deviation is given in paren-
theses (nd, not determinated).
CDCl3): d 7.04 (s, 1H), 6.73 (m, 2H), 5.79 (s, 1H), 5.16 (m, 2H), 4.58 (d, 1H,