ment of an efficient catalyst with a broad range of enone
substrates is a goal of considerable importance.
Table 1. Catalyst and Reaction Condition Screen for the
Reaction between 8a and 9aa
The potential of modified cinchona alkaloids7 and (thio)-
urea derivatives8 as efficient and enantioselective organo-
catalysts for asymmetric synthesis has been demonstrated.
As a result, a new type of organocatalyst derived from
modified cinchona alkaloids and (thio)urea was under
consideration, which is expected to exhibit synergistic
cooperation and effect organic reactions with excellent
efficiency and stereoselectivities. Recently, we have reported
a new type of primary amine thiourea consisting of 1,2-
diaminocyclohexane and 9-amino cinchona alkaloid deriva-
tives, which catalyzed Michael addition of nitroalkanes to
R,ꢀ-unsaturated ketones with high enantioselectivity and
efficiency.9 We wondered whether this approach could be
extended to Michael addition of malonate to enones. Fully
aware of the potential benefits but also of the many
difficulties we would likely encounter, we decided to pursue
this challenge.
At the outset of the investigation, we focused our attention
on the primary amine thiourea catalytic Michael addition of
diethyl malonate (9a) to cyclohex-2-enone (8a), and the
results are shown in Table 1. After the screening of catalysts,
it was confirmed by results that the reaction could be
entry
catalyst
solvent
toluene
convn (%)b
ee (%)b
1
2
3
4
5
6
1
2
3
4
5
6
7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
59
73
78
88
9
82
82
84
92
10
-83
-79
84
50
48
76
94
94
80
88
91
88
92
95
97
94
96
96
93
toluene
toluene
toluene
toluene
toluene
toluene
neat
DMSO
MeOH
hexane
CH2Cl2
CHCl3
DMF
(6) (a) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2003, 42, 661. (b) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Duan,
W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652. (c) Knudsen, K. R.;
Mitchell, C. E. T.; Ley, S. V. Chem. Commun. 2006, 66. (d) Wascholowski,
V.; Knudsen, K. R.; Mitchell, C. E. T.; Ley, S. V. Chem.-Eur. J. 2008,
14, 6155. (e) Jiang, Z.; Ye, W.; Yang, Y.; Tan, C.-H. AdV. Synth. Catal.
2008, 350, 2345.
13
43
89
25
34
98
72
72
74
82
88
88
80
91
96
>99
95
>99
60
7
8c
(7) For several reviews on modified cinchona alkaloids, see: (a) Eames,
J. Angew. Chem., Int. Ed. 2000, 39, 885. (b) Chen, Y.; Mcdaid, P.; Deng,
L. Chem. ReV. 2003, 103, 2965. (c) Tian, S.-K.; Chen, Y.; Hang, J.; Tang,
L.; Mcdaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (d) Marcelli, T.;
van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45,
7496For selected examples catalyzed by modified cinchona alkaloids, see:
(e) Chen, Y.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542. (f)
Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195. (g) McDaid, P.;
Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002, 41, 338. (h) Tiseni, P. S.;
Peters, R. Angew. Chem., Int. Ed. 2007, 46, 5325. (i) Poisson, T.; Dalla,
V.; Marsais, F.; Dupas, G.; Oudeyer, S.; Levacher, V. Angew. Chem., Int.
Ed. 2007, 46, 7090. (j) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda,
N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47,
4157. (k) Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.;
Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 8051. (l) Elsner, P.; Bernardi,
L.; Salla, G. D.; Overgaard, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2008,
130, 4897. (m) Bandini, M.; Sinisi, R.; Umani-Ronchi, A. Chem. Commun.
2008, 4360.
9
10
11
12
13
14
15
16
17
18
19
20d
21e
22f
23g
24h
Et2O
EtOAc
MeCN
1,4-dioxane
THF
THF
THF
THF
THF
THF
(8) For some reviews on (thio)urea derivatives, see: (a) Connon, S. J.
Chem.-Eur. J. 2006, 12, 5418. (b) Connon, S. J. Chem. Commun. 2008,
2499. (c) Miyabe, H.; Takemoto, Y. Bull. Chem. Soc. Jpn. 2008, 81, 785.
(d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
For selected examples catalysed by (thio)urea derivatives, see: (e) Curran,
D. P.; Kuo, H. L. J. Org. Chem. 1994, 59, 3259. (f) Sigman, M. S.; Jacobsen,
E. N. J. Am. Chem. Soc. 1998, 120, 4901. (g) Wenzel, A. G.; Lalonde,
M. P.; Jacobsen, E. N. Synlett. 2003, 1919. (h) Okino, T.; Hoashi, Y.;
Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (i) Sohtome, Y.;
Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45,
5589. (j) Okino, T.; Hoashi, Y.; Furukawa, T.; Takemoto, Y. J. Am. Chem.
Soc. 2005, 127, 119. (k) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem.,
Int. Ed. 2005, 44, 4032. (l) McCooey, S. H.; Connon, S. J. Angew. Chem.,
Int. Ed. 2005, 44, 6367. (m) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T.
Org. Lett. 2005, 7, 1967. (n) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem.
Commun. 2005, 4481. (o) Wang, J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Org.
Lett. 2005, 7, 4293. (p) Wang, Y.; Song, J.; Hong, R.; Li, H.; Deng, L.
J. Am. Chem. Soc. 2006, 128, 8156. (q) Song, J.; Wang, Y.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 6048. (r) Gao, P.; Wang, C.; Wu, Y.; Zhou, Z.;
Tang, C. Eur. J. Org. Chem. 2008, 4563. (s) Peng, F.; Shao, Z.; Fan, B.;
Song, H.; Li, G.; Zhang, H. J. Org. Chem. 2008, 73, 5202.
a Reaction conditions: A mixture of 5a (1.0 mmol), 6a (3.0 mmol), and
the catalyst (10 mol %) in the solvent (2.0 mL) was stirred at ambient
temperature for the time given. b Conversion and enantiomeric excess were
determined by chiral GC. c For 12 h. d At 40 °C for 12 h. e At 70 °C for
8 h. f With 2 mol % catalyst loading at 40 °C for 36 h. g With 1 mol %
catalyst loading at 40 °C for 72 h. h 8a (4.0 mmol) reacted with 9a (12.0
mmol) at 40 °C for 48 h with 0.5 mol % catalyst loading.
catalyzed by the primary amine thiourea (Table 1, entries
1-4). Especially, up to 88% of conversion and 92% ee were
obtained in toluene after 48 h with 4 prepared from (1R,2R)-
1,2-diaminocyclohexane and 9-amino (9-deoxy) epiquinine
(Table 1, entry 4). However, poor results were obtained when
catalyst 5 was employed, in which the primary amine was
substituted with two methyl groups (Table 1, entry 5).
(9) Li, P.; Wang, Y.; Liang, X.; Ye, J. Chem. Commun. 2008, 3302.
754
Org. Lett., Vol. 11, No. 3, 2009