Page 7 of 14
Journal of the American Chemical Society
(18) Lu, C.-H.; Guo, W.; Hu, Y.; Qi, X.-J.; Willner, I. Multitriggered
Shape-Memory Acrylamide-DNA Hydrogels. J. Am. Chem. Soc. 2015, 137,
15723–15731.
(19) Jia, Y.-G.; Zhu, X. Self-Healing Supramolecular Hydrogel Made of
Polymers Bearing Cholic Acid and β-Cyclodextrin Pendants. Chem. Mater.
2015, 27, 387–393.
Corresponding Author
1
2
3
* dongsy@hnu.edu.cn
* zhengbo@nwu.edu.cn
ORCID
4
5
6
7
8
9
(20) Zhang, M.; Xu, D.; Yan, X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F.
Self-Healing Supramolecular Gels Formed by Crown Ether Based Host–
Guest Interactions. Angew. Chem. Int. Ed. 2012, 51, 7011–7015.
(21) Fernández-Castaño Romera, M.; Göstl, R.; Shaikh, H.; ter Huurne,
G.; Schill, J.; Voets, I. K.; Storm, C.; Sijbesma, R. P. Mimicking Active
Biopolymer Structures with a Synthetic Hydrogel. J. Am. Chem. Soc. 2019,
141, 1989–1997.
(22) Karimi, M.; Zangabad, P. S.; Ghasemi, A.; Amiri, M.; Bahrami, M.;
Malekzad, H.; Asl, H. G.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.;
Boyuk, M. R. R. T.; Hamblin, M. R. Temperature-Responsive Smart
Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent
Advances. ACS Appl. Mater. Interfaces 2016, 8, 21107–21133.
(23) Hapiot, F.; Menuel, S.; Monflier, E. Thermoresponsive Hydrogels in
Catalysis. ACS Catal. 2013, 3, 1006–1010.
(24) Kitazawa, Y.; Ueki, T.; McIntosh, L. D.; Tamura, S.; Niitsuma, K.;
Imaizumi, S.; Lodge, T. P.; Watanabe, M. Hierarchical Sol–Gel Transition
Induced by Thermosensitive Self-Assembly of An ABC Triblock Polymer
in an Ionic Liquid. Macromolecules 2016, 49, 1414–1423.
(25) Wang, S.; Xu, Z.; Wang, T.; Xiao, T.; Hu, X.-Y.; Shen, Y.-Z.; Wang,
L. Warm/Cool-Tone Switchable Thermochromic Material for Smart Win-
dows by Orthogonally Integrating Properties of Pillar[6]Arene and Ferro-
cene. Nat. Commun. 2018, 9, 1737.
(26) Zhang, Z.-X.; Liu, K. L.; Li, J. A Thermoresponsive Hydrogel
Formed from a Star–Star Supramolecular Architecture. Angew. Chem. Int.
Ed. 2013, 52, 6180–6184.
(27) Du, P.; Liu, J.; Chen, G.; Jiang, M. Dual Responsive Supramolecular
Hydrogel with Electrochemical Activity. Langmuir 2011, 27, 9602–9608.
(28) Lorson, T.; Jaksch, S.; Lübtow, M. M.; Jüngst, T.; Groll, J.; Lühmann,
T.; Luxenhofer, R. A Thermogelling Supramolecular Hydrogel with
Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules
2017, 18, 2161–2171.
(29) Görl, D.; Soberats, B.; Herbst, S.; Stepanenko, V.; Würthner, F.
Perylene Bisimide Hydrogels and Lyotropic Liquid Crystals with Temper-
ature-Responsive Color Change. Chem. Sci. 2016, 7, 6786–6790.
(30) Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J.
M.; Scherman, O. A. Supramolecular Cross-Linked Structures via
Host−Guest Complexation with Cucurbit[8]Uril. J. Am. Chem. Soc. 2010,
132, 14251–14260.
(31) Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. First Thermally
Responsive Supramolecular Polymer Based on Glycosylated Amino Acid.
J. Am. Chem. Soc. 2002, 124, 10954–10955.
(32) Liu, J.; Chen, G.; Guo, M.; Jiang, M. Dual Stimuli-Responsive Su-
pramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Mac-
romolecules 2010, 43, 8086–8093.
(33) Zhang, X.-Z.; Xu, X.-D.; Cheng, S.-X.; Zhuo, R.-X. Strategies to Im-
prove the Response Rate of Thermosensitive PNIPAAm Hydrogels. Soft
Matter 2008, 4, 385–391.
(34) Rosa, V. R.; Woisel, P.; Hoogenboom, R. Supramolecular Control
over Thermoresponsive Polymers. Mater. Today 2016, 19, 44–55.
(35) Noro, A.; Hayashi, M.; Matsushita, Y. Design and Properties of Su-
pramolecular Polymer Gels. Soft Matter 2012, 8, 6416–6429.
(36) Taylor, M. J.; Tomlins, P.; Sahota, T. S. Thermoresponsive Gels. Gels
2017, 3, 4.
(37) Kawaguchi, H. Thermoresponsive Microhydrogels: Preparation,
Properties and Applications. Polym. Int. 2014, 63, 925–932.
(38) Haq, M. A.; Su, Y.; Wang, D. Mechanical Properties of PNIPAM
based Hydrogels: A Review. Mater. Sci. Eng. C 2017, 70, 842–855.
(39) Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K. Studies on Thermorespon-
sive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applica-
tions. Asian J. Pharm. Sci. 2015, 10, 99–107.
(40) Draper, E. R. Adams, D. J. Low-Molecular-Weight Gels: The State
of the Art. Chem. 2017, 3, 390–410.
(41) Estroff, L. A.; Hamilton, A. D. Water Gelation by Small Organic
Molecules. Chem. Rev. 2004, 104, 1201–1218.
(42) Piepenbrock, M.-O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Metal-
and Anion-Binding Supramolecular Gels. Chem. Rev. 2010, 110, 1960–
2004.
(43) Shenoy, S. L.; Painter, P. C.; Coleman, M. M. The Swelling and Col-
lapse of Hydrogen Bonded Polymer Gels. Polymer 1999, 40, 4853–4863.
Shengyi Dong: 0000-0002-8640-537X
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by National Natural Science Foundation
of China (21704024), Huxiang Young Talent Program from Hunan
Province (2018RS3036), the Fundamental Research Funds for the
Central Universities from Hunan University, and the 1000 Talents
Award of Shaan’xi Province (334041900005).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Bhattacharya, S.; Samanta, S. K. Soft-Nanocomposites of Nanoparti-
cles and Nanocarbons with Supramolecular and Polymer Gels and Their
Applications. Chem. Rev. 2016, 116, 11967–12028.
(2) Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K. High-Tech Ap-
plications of Self-Assembling Supramolecular Nanostructured Gel-Phase
Materials: From Regenerative Medicine to Electronic Devices. Angew.
Chem. Int. Ed. 2008, 47, 8002–8018.
(3) Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems
Based on Host–Guest Interactions. Chem. Rev. 2015, 115, 7794–7839.
(4) Döring, A.; Birnbaum, W.; Kuckling, D. Responsive Hydrogels-Struc-
turally and Dimensionally Optimized Smart Frameworks for Applications
in Catalysis, Micro-System Technology and Material Science. Chem. Soc.
Rev. 2013, 42, 7391–7420.
(5) Foster, J. A.; Parker, R. M.; Belenguer, A. M.; Kishi, N.; Sutton, S.;
Abell, C.; Nitschke, J. R. Differentially Addressable Cavities within Metal-
Organic Cage-Cross-Linked Polymeric Hydrogels. J. Am. Chem. Soc. 2015,
137, 9722–9729.
(6) Zhou, J.; Du, X.; Gao, Y.; Shi, J.; Xu, B. Aromatic-Aromatic Interac-
tions Enhance Interfiber Contacts for Enzymatic Formation of a Spontane-
ously Aligned Supramolecular Hydrogel. J. Am. Chem. Soc. 2014, 136,
2970–2973.
(7) Xu, W.; Song, Q.; Xu, J.-F.; Serpe, M. J.; Zhang, X. Supramolecular
Hydrogels Fabricated from Supramonomers: A Novel Wound Dressing
Material. ACS Appl. Mater. Interfaces 2017, 9, 11368–11372.
(8) Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.;
Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydro-
gels. Nature 2012, 489, 133–136.
(9) Ke, H.; Yang, L.-P.; Xie, M.; Chen, Z.; Yao, H.; Jiang, W. Shear-In-
duced Assembly of a Transient yet Highly Stretchable Hydrogel Based on
Pseudopolyrotaxanes. Nat. Chem. 2019, 11, 470–477.
(10) Coates, I. A.; Smith, D. K. Controlled Self-Assembly-Synthetic Tuna-
bility and Covalent Capture of Nanoscale Gel Morphologies. Chem. Eur. J.
2009, 15, 6340–6344.
(11) Zhang, Q.; Qu, D.-H.; Wu, J.; Ma, X.; Wang, Q.; Tian, H. A Dual-
Modality Photoswitchable Supramolecular Polymer. Langmuir 2013, 29,
5345–5350.
(12) Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and
Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015,
115, 13165–13307.
(13) Matsumoto, K.; Sakikawa, N.; Miyata, T. Thermo-Responsive Gels
That Absorb Moisture and Ooze Water. Nat. Commun. 2018, 9, 2315.
(14) Komatsu, H.; Matsumoto, S.; Tamaru, S.; Kaneko, K.; Ikeda, M.;
Hamachi, I. Supramolecular Hydrogel Exhibiting Four Basic Logic Gate
Functions To Fine-Tune Substance Release. J. Am. Chem. Soc. 2009, 131,
5580–5585.
(15) Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang,
F. A Multiresponsive, Shape-Persistent, and Elastic Supramolecular Poly-
mer Network Gel Constructed by Orthogonal Self-Assembly. Adv. Mater.
2012, 24, 362–369.
(16) Draper, E. R.; Adams, D. J. How Should Multicomponent Supramo-
lecular Gels Be Characterised? Chem. Soc. Rev. 2018, 47, 3395–3405.
(17) Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bio-
inspired Polymer Systems with Stimuli-Responsive Mechanical Properties.
Chem. Rev. 2017, 117, 12851–12892.
ACS Paragon Plus Environment