E.-L. Tsou et al. / Bioorg. Med. Chem. 16 (2008) 10198–10204
10203
3H), 3.10 (dd, 1H, J = 4.3, 8.6 Hz), 3.71 (d, 1H, J = 6.7 Hz), 3.78 (s,
3H), 3.82(dd, 1H, J = 4.3, 11.6 Hz), 3.86 (dd, 1H, J = 4.1, 11.6 Hz),
3.96 (dd, 1H, J = 5.0, 6.7 Hz), 4.02 (t, 1H, J = 4.6, 4.7 Hz), 6.90 (d,
2H, J = 8.6 Hz), 7.28 (d, 2H, J = 8.6 Hz); 13C NMR(150 MHz, CD3OD)
d 160.9, 130.8, 114.9, 85.4, 79.8, 75.4, 71.2, 60.8, 55.8, 49.9, 35.2;
HRMS calcd for [C13H19NO4+H]+ 254.1387, found 254.1388.
nitrophenyl-glycopyranoside (40 mM, 20 mM, 10 mM, 5 mM,
2.5 mM, 1.25 mM, 0.625 mM, 0 mM) at 405 nm using multi-detec-
tion reader (SpectraMax M5, Molecular Dectce). The data obtained
were fitted to the Michaelis–Menten equation using the GraphPad
to determine the Km values and Vmax values. For example, the Km
values for bacillus
a-glucosidase and yeast a-glucosidase are
1.5 mM and 0.19 mM, respectively. The substrate concentrations
were used at two fold Km values for evaluation of the inhibitory ef-
fect against various glycosidases. Enzymes at 0.25–1 units per mL
were used to provide an ideal progression curve, and inhibitors
4.1.12. (2R,3R,4R,5R)-2-(3-Hydroxy-4-methoxyphenyl)-5-
(hydroxymethyl)-1-methylpyrrolidine-3,4-diol (27)
Compound 27 was prepared from 20 following the procedure
previously described for the synthesis of compound 16. The title
were tested initially at 500 lM. The compounds that showed activ-
compound was obtained (86%) as a colorless solid: ½a D20
ꢂ
= +2 (c
ities were selected and further tested at lower concentration to
determine IC50. The assays performed in wells of a 96-well micro-
titer plate containing either sodium phosphate buffer (100 mM, pH
0.69, MeOH); 1H NMR(600 MHz, CD3OD) d 2.17 (s, 3H), 3.05 (m,
1H), 3.57 (d, 1H, J = 6.6 Hz), 3.78–3.84 (m, 5H), 3.93 (t, 1H, J = 6.4,
5.0 Hz), 3.98 (t, 1H, J = 4.7, 4.9 Hz), 6.73 (dd, 1H, J = 1.9, 8.2 Hz),
6.84 (m, 2H); 13C NMR (150 MHz, CD3OD) d 148.8, 134.7, 126.3,
121.0, 116.4, 112.6, 85.7, 80.0, 75.5, 71.0, 61.0, 56.6, 49.9, 35.1;
HRMS calcd for [C13H19NO5+H]+ 270.1336, found 270.1338.
6.8, for
a-glucosidase (E.C. 3.2.1.20) and b-glucosidase (E.C.
3.2.1.21), or sodium citrate buffer (100 mM, pH 6.4, for
a- and b-
mannosidase (E.C. 3.2.1.25).
Acknowledgment
4.1.13. (2R,3R,4R,5R)-1-Butyl-2-(3-hydroxy-4-methoxyphenyl)-
5-(hydroxymethyl)pyrrolidine-3,4-diol (28)
Following the same procedure as described for the preparation
of 16, instead of butraldehyde from formaldehyde, the title com-
This work was supported by the National Science Council and
Academia Sinica.
pound 28 was obtained as
a colorless syrup in 80% yield:
Supplementary data
½
a 2D0
ꢂ
= ꢀ35.1 (c 0.54, MeOH); 1H NMR (600 MHz, CD3OD) d 0.81
(t, 3H, J = 7.4, 7.3 Hz), 1.21 (m, 1H), 1.29 (m, 1H), 1.38 (m, 2H),
2.36 (m, 1H), 2.52 (m, 1H), 3.21 (dd, 1H, J = 3.5, 8.2 Hz), 3.66 (t,
1H, J = 6.8, 6,9 Hz), 3.78 (dd, 1H, J = 3.6, 11.3 Hz), 3.82–3.86 (m,
5H), 4.05 (t, 1H, J = 3.8, 3.7 Hz), 6.79 (dd, 1H, J = 1.7, 8.2 Hz), 6.85
(d, 1H, J = 8.2 Hz), 6.88 (d, 1H, J = 1.8 Hz); 13C NMR (150 MHz,
CD3OD) d 148.5, 147.6, 135.9, 121.0, 116.1, 112.5, 86.6, 80.5,
74.9, 68.4, 60.3, 56.5, 47.2, 31.3, 21.5, 14.4; HRMS calcd for
[C16H21NO5+H]+ 312.1805, found 312.1806.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J.
Phytochemistry 2001, 56, 265; (b) Newman, D. J.; Cragg, G. M.; Snader, K. M. Nat.
Prod. Rep. 2000, 17, 215; (c) Jung, M.; Park, M.; Lee, H. C.; Kang, Y.-H.; Kang, E.
S.; Kim, S. K. Curr. Med. Chem. 2006, 13, 1203.
2. For recent reviews, see: (a) Stütz, A. E. Iminosugars as Glycosidase Inhibitors:
Nojirimycin and Beyond; Wiley-VCH: Weinheim, 1999; (b) Compain, P.; Martin,
O. R. Curr. Top. Med. Chem. 2003, 3, 541; (c) Zou, W. Curr. Top. Med. Chem. 2005,
5, 1363. and references therein; (d) Wrodnigg, T. M. Monatsh. Chem. 2002, 133,
393; (e) Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199.
3. (a) Matkhalikova, S. F.; Malikov, V. M.; Yugadaev, M. R.; Yunosov, S. Y. Farmakol.
Alkaloidov Serdech. Glikoyidov 1971, 210
4. Ishida, S.; Okasaka, M.; Ramos, F.; Kashiwada, Y.; Takaishi, Y.; Kodzhimatov, O.
K.; Ashurmetov, O. J. Nat. Med 2008, 62, 236.
5. (a) Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.; Kusano, G. Chem.
Pharm. Bull. 2001, 49, 1362; (b) Shibano, M.; Tsukamoto, D.; Kusano, G.
Heterocycles 2002, 57, 1539.
6. (a) Gurjar, M. K.; Borhade, R. G.; Puranik, V. G.; Ramana, C. V. Tetrahedron Lett.
2006, 47, 6979; (b) Merino, P.; Delso, I.; Teiero, T.; Cardona, F.; Goti, A. Synlett
2007, 17, 2651; (c) Goti, A.; Cicchi, S.; Mannucci, V.; Cardona, F.; Guarna, F.;
Merino, P.; Tejero, T. Org. Lett. 2003, 5, 4235; (d) Toyao, A.; Tamura, O.; Takagi,
H.; Ishibashi, H. Synlett 2003, 1, 35; (e) Oliveira, D. F.; Severino, E. A.; Correia, C.
R. D. Tetrahedron Lett. 1999, 40, 2083.
4.1.14. (2R,3R,4R,5R)-2-(2,4-Dimethoxyphenyl)-5-(hydroxy-
methyl)-1-methylpyrrolidine-3,4-diol (29)
Compound 29 was prepared from 21 following the procedure
previously described for the synthesis of compound 16. The title
compound was obtained (77%) as a colorless syrup in 77% yield:
½
a 2D0 = +16.1 (c 1, MeOH); 1H NMR (600 MHz, CD3OD) d 2.32 (s,
ꢂ
3H), 3.21 (br, 1H), 3.81 (s, 3H), 3.85 (m, 4H), 3.90 (dd, 1H, J = 3.2,
11.9 Hz), 4.05 (t, 1H, J = 5.9, 5.9 Hz), 4.30 (t, 1H, J = 5.3,
6.0 Hz),4.39 (br, 1H), 6.59 (dd, 2H, J = 1.7, 8.4 Hz), 7.30 (d, 1H,
J = 8.3 Hz); 13C NMR (150 MHz, CD3OD) d 163.1, 160.9, 132.5,
106.3, 99.7, 81.6, 78.4, 71.6, 59.7, 56.1, 56.0, 49.9, 35.9; HRMS calcd
for [C14H21NO5+H]+ 284.1492, found 284.1497.
7. (a) Zhou, X.; Liu, W.-J.; Ye, J.-L.; Huang, P.-Q. Tetrahedron 2007, 6, 3, 6346; (b)
Chandrasekhar, S.; Saritha, B.; Jagadeshwar, V.; Prakash, S. J. Tetrahedron: Asym.
2006, 17, 1380.
4.1.15. (2R,3R,4R,5R)-2-(2,5-Dimethoxyphenyl)-5-(hydroxy-
methyl)-1-methylpyrrolidine-3,4-diol (30)
8. (a) Yu, C.-Y.; Huang, M.-H. Org. Lett. 2006, 8, 3021.
Compound 30 was prepared from 22 following the procedure
previously described for the synthesis of compound 16. The title
9. (a) Iida, H.; Yamazaki, N.; Kibayashi, C. Tetrahedron Lett. 1986, 27, 5393; (b)
Tashkhodzhaev, B.; Aripova, S. F.; Turgunov, K. K.; Abdilalimov, O. Chem. Nat.
Compd 2004, 40, 618.
10. (a) Chang, Y.-F.; Jiang, Y.-R.; Cheng, W.-C. Tetrahedron Lett. 2008, 49, 543; (b)
Shih, H.-W.; Cheng, W.-C. Tetrahedron Lett. 2008, 49, 1008; (c) Cheng, T.-J. R.;
Sung, M.-D.; Liao, H.-Y.; Chang, Y.-F.; Chen, C.-W.; Huang, C.-Y.; Chou, L.-Y.;
Wu, Y.-D.; Chen, Y.-H.; Cheng, Y.-S. E.; Wong, C.-H.; Ma, C.; Cheng, W.-C. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 431; (d) Huang, C.-M.; Liu, R.-S.; Wu, T.-S.;
Cheng, W.-C. Tetrahedron Lett. 2008, 49, 2895.
11. (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893; (b)
Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales, G. A.; Salvino, J. M.;
Zhang, W. J. Comb. Chem. 2007, 9, 855; (c) Sammelson, R. E.; Kurth, M. J. Chem.
Rev. 2001, 101, 137; (d) Dolle, R. E.; Le Bourdonnec, B.; Morales, G. A.; Moriarty,
K. J.; Salvino, J. M. J. Comb. Chem. 2006, 8, 597; (e) Thompson, L. A.; Ellman, J. A.
Chem. Rev. 1996, 96, 555; (f) Lazo, J. S.; Wipf, P. J. Pharmacol. Exp. Ther. 2000,
293, 705.
compound was obtained (90%) as a colorless solid: ½a D20
= ꢀ9
ꢂ
(c 0.08, MeOH); 1H NMR (600 MHz, CD3OD) d 2.19 (s, 3H), 3.08
(dd, 1H, J = 4.3, 9.1 Hz), 3.8175 (s, 3H), 3.78–3.81 (m, 4H), 3.85
(dd, 1H, J = 4.1, 11.6 Hz), 4.01 (t, 1H, J = 4.9, 4.9 Hz), 4.10 (t, 1H,
J = 4.8, 5.1 Hz), 4.29 (d, 1H, J = 5.6 Hz), 6.81 (dd, 1H, J = 3.1,
8.9 Hz), 6.91 (d, 1H, J = 8.9 Hz), 7.01 (d, 1H, J = 3.0 Hz); 13C NMR
(150 MHz, CD3OD) d 155.5, 154.0, 130.3, 114.4, 113.3, 84.4, 80.1,
71.4, 60.9, 56.7, 56.2, 50.0, 35.2; HRMS calcd for [C14H21NO5+H]+
284.1492, found 284.1491.
4.2. Enzyme assay27
12. For recent reviews, see Mathé, C.; Gosselin, G. Antiviral Res. 2006, 71, 276. and
references therein.
13. (a) Rountree, J. S. S.; Butters, T. D.; Wormald, M. R.; Dwek, R. A.; Asano, N.;
Ikeda, K.; Evinson, E. L.; Nash, R. J.; Fleet, G. W. J. Tetrahedron Lett. 2007, 48,
4287;; (b) Yu, C.-Y.; Asano, N.; Ikeda, K.; Wang, M.-X.; Butters, T. D.; Wormald,
4.2.1. General procedure for the assay with various glycosidases
The initial velocities of hydrolysis at room temperature were
measured spectrophotometrically at various concentrations of p-