6360
S. B. Bharate et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6357–6361
2. Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi,
30
20
10
0
K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.;
Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.;
Hinuma, S.; Fujisawa, Y.; Fujino, M. Nature 2003, 422, 173.
3. Straub, S. G.; Sharp, G. W. Diabetes Metab. Res. Rev. 2002, 18, 451.
4. Bjenning, C.; Al-Shamma, H.; Thomsen, W.; Leonard, J.; Behan, D. Curr. Opin.
Invest. Drugs 2004, 5, 1051.
5. Im, D.-S. J. Lipid Res. 2004, 45, 410.
6. Kroeze, W. K.; Sheffler, D. J.; Roth, B. L. J. Cell Sci. 2003, 116, 4867.
7. Shapiro, H.; Shachar, S.; Sekler, I.; Hershfinkel, M.; Walker, M. D. Biochem.
Biophys. Res. Commun. 2005, 335, 97.
8. McKeown, S. C.; Corbett, D. F.; Goetz, A. S.; Littleton, T. R.; Bigham, E.; Briscoe, C.
P.; Peat, A. J.; Watson, S. P.; Hickey, D. M. B. Bioorg. Med. Chem. Lett. 2007, 17,
1584.
9. Briscoe, C. P.; Peat, A. J.; McKeown, S. C.; Corbett, D. F.; Goetz, A. S.; Littleton, T.
R.; McCoy, D. C.; Kenakin, T. P.; Andrews, J. L.; Ammala, C.; Fornwald, J. A.;
Ignar, D. M.; Jenkinson, S. Br. J. Pharmacol. 2006, 148, 619.
10. Garrido, D. M.; Corbett, D. F.; Dwornik, K. A.; Goetz, A. S.; Littleton, T. R.;
McKeown, S. C.; Mills, W. Y.; Smalley, T. L.; Briscoe, C. P.; Peat, A. J. Bioorg. Med.
Chem. Lett. 2006, 16, 1840.
11. Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang, Y.; Baumann, C.;
Lenhard, J.; Murray, W. V.; Demarest, K. T.; Kuo, G.-H. J. Med. Chem. 2007, 50,
2807.
Basal
LA
19
14
17
Compounds at 10µM
Figure 2. Effect of compounds 14, 17, 19 and linoleic acid on insulin secretion from
the hamster pancreatic insulinoma cell line (HIT-T15).
12. Min, G. E.; He, J.; Lau, F. W. Y.; Liang, G. B.; Lin, S.; Liu, W.; Walsh, S. P.; Yang, L.
World Patent WO2007136572, 2007 (Merck & Co., Inc.).
13. Defossa, E.; Goerlitzer, J.; Klabunde, T.; Drosou, V.; Stengelin, S.; Haschke, G.;
Herling, A.; Bartoschek, S. World Patent WO 2007131620, 2007 (Sanofi-
Aventis).
14. Defossa, E.; Follmann, M.; Klabunde, T.; Drosou, V.; Hessler, G.; Stengelin, S.;
Haschke, G.; Herling, A.; Bartoschek, S. World Patent WO2007131622, 2007
(Sanofi-Aventis).
Active compounds 14, 17, 19 and 25 were further tested and
EC50 and pEC50 values were determined as shown in Table 2. Com-
pound 25 showed EC50 of 0.97 lM (pEC50 6.01) with 84.5% maxi-
mal response, which suggests that introduction of alkyl chain on
aromatic nucleus of 14, resulted in improved GPR40 agonistic
15. Negoro, K.; Iwasaki, F.; Ohnuki, K.; Kurosaki, T.; Yonetoku, Y.; Asai, N.; Yoshida,
S.; Soga, T. World Patent WO2007123225, 2007 (Astellas Pharma).
16. Sharma, R.; Akerman, M.; Cardozo, M.; Houze, J.; An-rong, L.; Liu, J.; Liu, J.;
Zhihua, M. A.; Medina, J.; Schmitt, M.; Sun, Y.; Wang, Y.; Wang, Z.; Zhu, L.
World Patent WO2007106469, 2007 (Amgen).
17. Goddard, C.; Owman, C.; Olde, B.; Rome, D.; Sterner, O. World Patent
WO2007049050, 2007 (Heptahelix-AB).
18. Akerman, M.; Brown, S.; Houze, J. B.; Liu, J.; Zhihua, M. A.; Medina, J. C.; Qiu,
W.; Schmott, M. J.; Wang, Y.; Zhu, L. World Patent WO2007033002, 2007
(Amgen).
19. Yasuma, T.; Negoro, N.; Takashima, H. World Patent WO2007013689, 2007
(Takeda Pharmaceuticals).
20. Yasuma, T.; Sasaki, S.; Sakai, N. World Patent WO2005063725, 2005 (Takeda
Pharmaceuticals).
21. Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Thomas, C. J.; Raaka, B. M.; Costanzi,
S.; Gershengorn, M. C. J. Med. Chem. 2007, 50, 2981.
22. Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Engel, S.; Raaka, B. M.; Costanzi, S.;
Gershengorn, M. C. J. Med. Chem. 2008, 51, 625.
23. Singh, I. P.; Bharate, S. B. Nat. Prod. Rep. 2006, 23, 558.
24. Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Khan, I. A.;
Singh, I. P. Bioorg. Med. Chem. 2006, 14, 1750.
25. Bharate, S. B.; Khan, S. I.; Yunus, N. A.; Chauthe, S. K.; Jacob, M. R.; Tekwani, B.
L.; Khan, I. A.; Singh, I. P. Bioorg. Med. Chem. 2007, 15, 87.
26. Murata, M.; Yamakoshi, Y.; Homma, S.; Arai, K.; Makamura, Y. Biosci. Biotechnol.
Biochem. 1992, 56, 2062.
27. Carney, J. R.; Krenisky, J. M.; Williamson, T.; Luo, J. J. Nat. Prod. 2002, 65, 203.
28. Okada, Y.; Ishimaru, A.; Suzuki, R.; Okuyama, T. J. Nat. Prod. 2004, 67, 103.
29. Bharate, S. B.; Mahajan, T. R.; Gole, Y. R.; Nambiar, M.; Matan, T. T.;
Kulkarni-Almeida, A.; Balachandran, S.; Junjappa, H.; Balakrishnan, A.;
Vishwakarma, R. A. Bioorg. Med. Chem. 2008, 16, 7167.
activity than that of 14 (EC50
sponse). Compound 19 showed potent activity with EC50 value of
0.07 0.004 M (pEC50 7.12, 100.2% maximal response). The effi-
cacy of the compound is shown as a percentage of the maximal
agonistic response elicited by the test compound with respect to
the maximal response evoked by the internal standard (linoleic
6 lM, pEC50 5.22, 102.2% maximal re-
l
acid) at a dose of 10
pound 19 was also tested for hPPAR-
showed very weak agonistic activity for hPPAR-
l
M. In order to determine the selectivity, com-
agonistic activity and it
. DMPK study on
c
c
one of representative of the scaffold (compound 14) was per-
formed and pharmacokinetic parameters (Tmax 0.25 h, Cmax
0.88 lg/mL, AUClast 3–13 h lg/mL, AUC0-infinity 3.41 h lg/mL
and half-life 6.59 h) showed that this scaffold has good PK
properties.
Activation of the GRP40 receptor is known to play a role in pan-
creatic and neurological function and the receptor is specifically
localized in the brain and pancreas.1 In the pancreas the receptor
expression is restricted to insulin producing b-cells. Since the key
objective of GPR40 agonists is to prime islet b-cells to respond to
glucose by inducing insulin secretion, we further evaluated these
active compounds for their ability to induce insulin secretion in
pancreatic islet cells. Further, the GPR40 mRNA is known to be ex-
pressed significantly in most pancreatic b-cell lines with highest
expression levels in MIN6, followed by b-TC and HIT-T15.2 We
therefore selected the HIT-T15 cell line for insulin secretion stud-
30.
A typical procedure for synthesis of diacylphloroglucinols: A mixture of
phloroglucinol (12, 1 mmol), respective carboxylic acid (2.5 mmol) and boron
trifluoride-diethyl ether (10 mL) was refluxed at 100 °C for 2 h. Reaction
mixture was poured in crushed ice and stirred for 5 min and then extracted
with ethyl acetate. Ethyl acetate layer was washed with brine solution and
finally dried over anhydrous sodium sulphate. Solvent was removed under
reduced pressure and crude product was purified by silica gel column
chromatography (#100–200) using hexane/EtOAc (3:1) as eluent. 1,3-Di-(3-
methyl-butanoyl)-2,4,6-trihydroxy benzene (14): cream colored solid; yield:
67%; 1H NMR (CDCl3, 300 MHz): d 5.84 (s, 1H), 2.98 (d, J = 6.4 Hz, 4H), 2.25 (m,
2H), 0.99 (d, J = 6.6 Hz, 12H); CIMS: m/z 295 [M+1]+. 1,3-Diisobutyryl-2,4,6-
trihydroxy benzene (17): cream colored sticky solid; yield: 55%; 1H NMR
(CDCl3, 300 MHz): d 6.13 (s, 1H), 3.93 (m, 2H), 1.17 (d, J = 6.7 Hz, 12H); CIMS:
m/z 267 [M+1]+. 1,3-Didodecanoyl-2,4,6-trihydroxybenzene (19): cream
colored solid; yield: 60%; 1H NMR (CDCl3, 300 MHz): d 16.27 (s, 1H, OH),
5.79 (s, 1H), 3.10 (t, J = 7.5 Hz, 4H), 1.67 (m, 4H), 1.32 (m, 32H), 0.98 (t,
J = 7.5 Hz, 6H); MS (ESI): m/z 489.4 [MÀ1]+.
ies. HIT-T15 from hamsters were treated with 10 lM of compound
14, 17 and 1934 Each of these induced insulin secretion comparable
to the effect of linoleic acid (Fig. 2). Further, the inactive com-
pounds did not show any antagonist effect for linoleic acid induced
calcium flux (data not included).9
In conclusion, compounds that activate GPR40 at low sub-
micromolar concentrations have been identified, the majority of
which behave as full agonists as compared to the endogenous
long-chain fatty acid ligands. This series of compounds have a po-
tential to emerge as a lead candidate with potent GPR40 agonistic
activity for the treatment of type-2 diabetes.
31. Tada, M.; Chiba, H.; Takakuwa, T.; Kojima, E. J. Med. Chem. 1992, 35, 1209.
32. Procedure for synthesis of 1,3-diisopentanoyl-5-butyl-2,4,6-trihydroxybenzene
(25): To a solution of 14 (1 mmol) in methanol, a freshly prepared solution
of sodium methoxide was added followed by addition of n-butyl bromide
(1.2 mmol). Reaction mixture was then refluxed for 2 h. Solvent was
evaporated on vacuo rotavapor and crude product was purified by silica gel
column chromatography (#100–200) using hexane/EtOAc (4:1) as eluent.
Yield: 60%; yellow oil; 1H NMR (CDCl3, 300 MHz): d 16.18 (s, 1H), 14.96 (s, 1H),
References and notes
1. Briscoe, C. P.; Tadayyon, M.; Andrews, J. L.; Benson, W. G.; Chambers, J. K.;
Eilert, M. M.; Ellis, C.; Elshourbagy, N. A.; Goetz, A. S.; Minnick, D. T.; Murdock,
P. R.; Sauls, H. R., Jr.; Shabon, U.; Spinage, L. D.; Strum, J. C.; Szekeres, P. G.; Tan,
K. B.; Way, J. M.; Ignar, D. M.; Wilson, S.; Muir, A. J. Biol. Chem. 2003, 278, 11303.