92
M.A. Lynn et al. / Journal of Molecular Structure 1011 (2012) 81–93
Table 8
the R and Bt/oBt fragments is the primary influence on this
reaction.
Energy of stabilization obtained when geometry of R(oBt) system is converted from
perpendicular to planar.
R
Energy of stabilization to more
stable R(oBt) conformer
(kcal/mol)
Energy of stabilization to less
stable R(oBt) conformer
(kcal/mol)
Acknowledgments
This work was supported by an NTID Faculty Evaluation and
Development Grant (MAL) as well as generous financial support
from Union College (LAT). We also thank the National Science
Foundation (NSF 0521237) for supporting the X-ray diffraction
facility at Vassar College (JMT).
Ph
Py
5.31
9.32
5.39
6.50
2.60
5.04
CF3Ph
Th
MeOPh 5.79
Fu
Pyr
7.67
9.47
5.51
6.01
Appendix A. Supplementary material
CCDC 808288, 809123, 808557 and 809122 contain the supple-
mentary crystallographic data for Ph(Bt), Py(Bt), Ph(oBt) and
Py(oBt) respectively. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
Table 9
Optimized CRACoBt bond lengths for perpendicular and coplanar R(oBt) systems.
R
CRACoBt bond length (Å)
Change
Perpendicular
Coplanar
Ph
Py
CF3Ph
Th
MeOPh
Fu
1.485
1.492
1.486
1.471
1.483
1.468
1.469
1.469
1.469
1.470
1.446
1.465
1.442
1.440
ꢁ0.016
ꢁ0.023
ꢁ0.016
ꢁ0.025
ꢁ0.018
ꢁ0.026
ꢁ0.029
References
[1] J.C. Kwan, R. Ratnayake, K.A. Abboud, V.J. Paul, H. Luesch, J. Org. Chem. 75
(2010) 8012.
Pyr
[2] S. Zhang, R. Pattacini, P. Braunstein, Organometallics 29 (2010) 6660.
[3] L.J. Carlson, J. Welby, K.A. Zebrowski, M.M. Wilk, R. Giroux, N. Ciancio, J.M.
Tanski, A. Bradley, L.A. Tyler, Inorg. Chim. Acta 365 (2011) 159.
[4] S. Fustero, E. Salavert, A. Navarro, F. Mojarrad, A.S. Fuentes, in: O.A. Attanasi, D.
Spinelli, (Eds.), Targets in Heterocyclic Systems, vol. 5, Italian Society of
Chemistry, 2001, pp. 235–270.
[5] A.C. Gaumont, M. Gulea, J. Levillain, Chem. Rev. 109 (2009) 1371.
[6] L.A. Tyler, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 42 (2001) 5408.
[7] R. Pattacini, G. Margraf, A. Messaoudi, N. Oberbeckmann-Winter, P. Braunstein,
Inorg. Chem. 21 (2008) 9886.
oBt upon oxidation because none of these systems have a hetero-
atom in R that can become syn to an oppositely charged hetero-
atom in the oBt portion of the molecule. Given the results in
Table 8 in which the energies of stabilization for Ph(oBt) and
CF3Ph(oBt) are essentially the same while that for MeOPh(oBt) is
approximately 0.40 kcal/mol greater, a very slight difference in
[8] S.F. Lu, D.M. Du, J. Xu, S.W. Zhang, J. Am. Chem. Soc. 128 (2006) 7418.
[9] L.F. Lindoy, Coord. Chem. Rev. 4 (1969) 41.
[10] M. Akbar Ali, S.E. Livingstone, Coord. Chem. Rev. 13 (1974) 101.
[11] H.A. Tayim, A.S. Salameh, Polyhedron 2 (1983) 1091.
CRACoBt
p bonding owing to the presence and nature of a substitu-
ent on the phenyl ring appears to be the only factor responsible for
the difference in the relative rates of reaction of each of these R(Bt)
systems. Among these three systems, as shown in Table 9,
CF3Ph(oBt) does have the highest CRACoBt bond order albeit by only
0.005 units more than MeOPh(oBt) when the R and oBt groups are
coplanar.
[12] K. Singh, R. Singh, J.P. Tandon, Bull. Chem. Soc. Jpn. 61 (1988) 4494.
[13] K.S. Ramasamy, R. Bandaru, D. Averett, J. Org. Chem. 65 (2000) 5849.
[14] D.R. Williams, P.D. Lowder, Y.G. Gu, D.A. Brooks, Tetrahedron Lett. 38 (1997)
331.
[15] V.C. Ezeh, A.K. Patra, T.C. Harrop, Inorg. Chem. 49 (2010) 2586.
[16] Y. Huang, H. Gan, S. Li, J. Xu, X. Wu, H. Yao, Tetrahedron 51 (2010) 1751.
[17] T. Itoh, K. Nagata, H. Ishikawa, A. Ohsawa, Heterocycles 63 (2004) 2769.
[18] C.J. Jones, J.A. McCleverty, J. Chem. Soc. A 12 (1971) 37.
The final molecule, the pyridinyl-substituted system, appears to
be a special case of the electronic factors discussed above. While it
does indeed have a heteroatom-containing R group, which would
at first suggest that it should undergo oxidation among the fastest
of the systems examined here as evidenced by the energy of stabil-
ization presented in Table 8, the relatively low CPyACoBt bond order
given in Table 7 and the orientation of the pyridinyl ring in the
structure of Py(Bt) that is different than for the R groups in all of
the other benzothiazolines indicate otherwise. While we have
more work to flesh out the mechanism of this oxidation reaction,
we suspect that it is this electrostatic interaction between NPy
and the H atom of NBt that acts to impede the loss of this H atom
from the molecule, thereby slowing the oxidation reaction.
[19] A.S. Salameh, H.A. Tayim, B.C. Uff, Polyhedron 6 (1982) 543.
[20] A.C. Braithwaite, C.E.F. Rickard, T.N. Waters, Inorg. Chim. Acta 26 (1978) 63.
[21] A.C. Braithwaite, C.E.F. Rickard, T.N. Waters, Transition Met. Chem. 1 (1975) 5.
[22] G. M Sheldrick, Acta Cryst. A 64 (2008) 112.
[23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
[24] A.D. Becke, J. Chem. Phys. 78 (1993) 5648.
[25] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
4. Conclusions
[26] S.F. Soua, P.A. Fernandes, M.J. Ramos, J. Phys. Chem. A 111 (2007) 10439.
[27] H.P. Lankelma, P.X. Sharnoff, J. Am. Chem. Soc. 53 (1931) 2654.
[28] K. Yamamoto, M. Fujita, K. Tabashi, Y. Kawashima, E. Kato, M. Oya, T. Iso, J.
Iwao, J. Med. Chem. 31 (1988) 919.
[29] M. Hori, T. Kataoka, J. Shimizu, Y. Imái, Chem. Pharm. Bull. 27 (1979) 1982.
[30] M. Remko, O.A. Walsh, W.G. Richards, Chem. Phys. Lett. 336 (2001) 156.
[31] M. Remko, P.T. Van Duijnen, M. Swart, Chem. Struct. 14 (2003) 271.
[32] J. Chowdhury, J. Sarkar, T. Tanaka, G.B. Talapatra, J. Phys. Chem. C 112 (2008)
227.
This work presents a discussion of the ground-state factors that
influence the relative rates of oxidation for a set of 2-benzothiazo-
line analogs. We find that, with one exception, benzothiazolines
that possess a heterocyclic R group oxidize faster than those with
a phenyl group. Although one would expect that the establishment
of
p conjugation across the CRACoBt bond would be a driving force
[33] S. Abdalla, M. Springborg, J. Phys. Chem. A 114 (2010) 5823.
[34] A. Tabatchnik, V. Blot, M. Pipelier, D. Dubreuil, E. Renault, J.Y. Le Questel, J.
Phys. Chem. A 114 (2010) 6413.
in the reaction, our computations suggest that the establishment of
a favorable electrostatic interaction between the heteroatoms of