dendrimers the cell viability was around 100% up to a con-
centration of 100 mg mLÀ1. These latter results compare
favorably with linear PEG. Unlike the G1 dendrimers, the
cell morphologies after exposure to the G2 dendrimer solu-
tions remained virtually unchanged as compared with these of
the control cells (Fig. S3 in the ESIw). Both results indicate a
rather low toxicity of the G2 dendrimers.
Profs. M. Detmar and P. Walde (ETH Zurich) are thanked
for their support with cytotoxicity and AFM measurements,
respectively. Prof. A. Vasella (ETH Zurich) is thanked for
kindly providing access to his instruments. This work was
supported by ETH Research Grants (ETH-1608-1 and
ETH-0908-2). A. Z. thanks for the financial support from
the National Natural Science Foundation of China (Nos.
20374047 and 20574062).
Fig. 3 (a) Optical micrograph of the aggregates in 0.25 wt% aqueous
solutions of Et-G2. Note that the white features are the ones in focus.
The inset: four-times enlarged feature. (b) Tapping mode AFM image
of the aggregates on HOPG from 0.25 wt% aqueous solutions of
Et-G2. (c) Cross-sectional profile of AFM image in (b).
Notes and references
1 (a) S. M. Grayson and J. M. J. Frechet, Chem. Rev., 2001, 101,
´
3819; (b) B. Helms and E. W. Meijer, Science, 2006, 311, 929.
2 (a) R. Van Heerbeek, P. C. J. Kamer, P. W. N. M. Van Leeuwen
and J. N. H. Reek, Chem. Rev., 2002, 102, 3717; (b) M. E. Van der
Boom, Angew. Chem., Int. Ed., 2002, 41, 3363; (c) S.-E. Stiriba, H.
Frey and R. Haag, Angew. Chem., Int. Ed., 2002, 41, 1329; (d) C. C.
Lee, J. A. MacKay, J. M. J. Frechet and F. C. Szoka, Nat.
´
Biotechnol., 2005, 23, 1517; (e) L. E. Euliss, J. A. DuPont, S.
Gratton and J. DeSimone, Chem. Soc. Rev., 2006, 35, 1095; (f) D.
Schaffert and E. Wagner, Gene Ther., 2008, 15, 1.
3 (a) J. W. Weener and E. W. Meijer, Adv. Mater., 2000, 12, 741; (b)
F. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini and F. Vogtle,
¨
J. Am. Chem. Soc., 2007, 129, 10714.
4 (a) I. Gitsov and J. M. J. Frechet, J. Am. Chem. Soc., 1996, 118,
´
3785; (b) A. L. Hofacker and J. R. Parquette, Angew. Chem., Int.
Ed., 2005, 44, 1053.
5 (a) G. R. Newkome, J. K. Young, G. R. Baker, R. L. Potter, L.
Audoly, D. Cooper and C. D. Weis, Macromolecules, 1993, 26,
2394; (b) X. S. Feng, D. Taton, R. Borsali, E. L. Chaikof and Y.
Gnanou, J. Am. Chem. Soc., 2006, 128, 11551.
Fig. 4 Cytotoxicity of dendrimers to B16F1 (a) and HaCat cells (b)
by CCK-8 assay. Data are mean values plus/minus standard deviation
of four samples/cultures.
in dry state on solid substrates (HOPG) by AFM. For sample
preparation, an aqueous solution of Et-G2 was pre-heated
above its LCST (B50 1C) and then spin-coated (2000 rpm)
onto the pre-heated HOPG substrate. Fig. 3b shows the
tapping-mode image of the aggregates, which very much like
in OM appeared spherical. The cross-sectional profile (Fig. 3c)
indicates the aggregates on the substrate with an average size
of roughly around 30 nm (height) Â1 mm (width), which
suggests the aggregates in dry state to be smaller than those
observed in aqueous solution. Further studies are on the way
to elucidate the mechanism of aggregate formation aiming,
besides others, at an understanding of the origin of this unique
behavior.
6 (a) M. C. Parrott, E. B. Marchington, J. F. Valliant and A.
Adronov, J. Am. Chem. Soc., 2005, 127, 12081; (b) Y. Zhou, D.
Yan, W. Dong and Y. Tian, J. Phys. Chem. B, 2007, 111, 1262;
(c) H. Lee, J. A. Lee, Z. Poon and P. T. Hammond, Chem.
Commun., 2008, 3726.
7 (a) Y. Haba, A. Harada, T. Takagishi and K. Kono, J. Am. Chem.
Soc., 2004, 126, 12760; (b) Y. Haba, C. Kojima, A. Harada and K.
Kono, Macromolecules, 2006, 39, 7451.
8 Y. Z. You, C. Y. Hong, C. Y. Pan and P. H. Wang, Adv. Mater.,
2004, 16, 1953.
9 W. T. S. Huck, Mater. Today, 2008, 11, 24.
10 R. Duncan and L. Izzo, Adv. Drug Delivery Rev., 2005, 57, 2215.
11 M. S. Thompson, T. P. Vadala, M. L. Vadala, Y. Lin and J. S.
Riffle, Polymer, 2008, 49, 345.
12 (a) J.-G. Li, C. Meng, X.-Q. Zhang, L. Zhang and A. Zhang, Prog.
Chem., 2006, 18, 1157; (b) V. Gajbhiye, P. V. Kumar, R. K. Tekade
and N. K. Jain, Curr. Pharm. Des., 2007, 13, 415.
13 (a) N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H.
Frey, J. W. Weener, E. W. Meijer, W. Paulus and R. Duncan, J.
Controlled Release, 2000, 65, 133; (b) H.-T. Chen, M. F. Neerman,
A. R. Parrish and E. E. Simanek, J. Am. Chem. Soc., 2004, 126,
10044.
Because of the rather attractive thermoresponsive charac-
teristics of the dendrimers reported here, their cytotoxicity17
was investigated using B16F1 and HaCat cell lines, and the
results were compared with linear PEG (Mn = 5600). These
cell lines were incubated with aqueous solutions of all den-
drimers (concentrations: 1–100 mg mLÀ1) for 48 h at 37 1C and
treated with a CCK-8 assay for another 3 h. The cytotoxicity
results are plotted in Fig. 4. The cell viability fell to o50% for
B16F1 and o80% for HaCat, respectively, for both G1
dendrimers (above concentration 50 mg mLÀ1), with Et-G1
being slightly more toxic than Me-G1. In contrast, for both G2
14 S. Saeki, N. Kuwahara, M. Nakata and M. Kaneko, Polymer,
1976, 17, 685.
15 D. W. Chang and L. Dai, J. Mater. Chem., 2007, 17, 364.
16 (a) W. Li, A. Zhang, K. Feldman, P. Walde and A. D. Schluter,
¨
Macromolecules, 2008, 41, 3659; (b) W. Li, A. Zhang and A. D.
Schluter, Chem. Commun., 2008, DOI: 10.1039/b811464a.
¨
17 For cytotoxicity of dendrimers, see for example: U. Boas and P. M.
H. Heegaard, Chem. Soc. Rev., 2004, 33, 43.
ꢀc
This journal is The Royal Society of Chemistry 2008
5950 | Chem. Commun., 2008, 5948–5950