280
R.M. Gauvin et al. / Inorganica Chimica Acta 362 (2009) 277–280
with graphite-monochromated MoKa radiation (k =
0.71073 A) at the temperature of 100.0(3) K, with the x scan
Appendix A. Supplementary material
˚
mode. The full Ewald sphere reflections were collected up to
2h = 52°. The unit cell parameters were determined from
least-squares refinement of the setting angles of 259 strong
reflections. Details concerning crystal data and refinement
are given in Table 1. Lorentz, polarization, and numerical
absorption corrections were applied. The structure was
solved by direct methods [21–23]. All the non-hydrogen
atoms were refined anisotropically using full-matrix least-
squares on F2. The hydrogen atoms were found from differ-
ence Fourier synthesis and refined with individual isotropic
temperature factors equal to 1.2 (or 1.5 for methyl groups)
times the value of the equivalent temperature factor of the
parent atom. SHELXTL chain of programs was used for all
the calculations [24]. Atomic scattering factors were those
incorporated in the computer programs.
CCDC 666363 contains the supplementary crystallo-
graphic data for 1Me. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre
data associated with this article can be found, in the online
References
[1] V.C. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283.
[2] G.J.P. Britovsek, V.C. Gibson, D.F. Wass, Angew. Chem., Int. Ed.
Engl. 38 (1999) 428.
[3] J.A.M. Canich, H.W. Turner, WO-A 92/12162, 1992.
[4] A.D. Horton, J. de With, Chem. Commun. (1996) 1375.
[5] S. Tinkler, R.J. Deeth, D.J. Duncalf, A. McCamley, Chem. Commun.
(1996) 2623.
[6] J.D. Scollard, D.H. McConville, N.C. Payne, J.J. Vittal, Macromol-
ecules 29 (1996) 5241.
[7] J.D. Scollard, D.H. McConville, J. Am. Chem. Soc. 118 (1996) 10008.
[8] J.D. Scollard, D.H. McConville, J.J. Vittal, N.C. Payne, J. Mol.
Catal. A 128 (1998) 201.
[9] R. Baumann, W.M. Davis, R.R. Schrock, J. Am. Chem. Soc. 119
(1997) 3830.
[10] L.-C. Liang, R.R. Schrock, W.M. Davis, D.H. McConville, J. Am.
Chem. Soc. 121 (1999) 5797.
[11] J. Jin, S. Tsubaki, T. Uozumi, T. Sano, K. Soga, Macromol. Rapid
Commun. 19 (1998) 597.
[12] C.-H. Ahn, M. Tahara, T. Uozumi, J. Jin, S. Tsubaki, T. Sano, K.
Soga, Macromol. Rapid Commun. 21 (2000) 385.
[13] T. Uozumi, S. Tsubaki, J. Jin, T. Sano, K. Soga, Macromol. Chem.
Phys. 202 (2001) 3279.
[14] F. Heatley, F.S. Mair, R.G. Pritchard, R.J. Woods, J. Organomet.
Chem. 690 (2005) 2078.
[15] B. Tsuie, D.C. Swenson, R.F. Jordan, J.L. Petersen, Organometallics
16 (1997) 1392.
[16] A. van der Linden, C.J. Schaverien, N. Meijboom, C. Ganter, A.G.
Orpen, J. Am. Chem. Soc. 117 (1995) 3008.
[17] H. Burger, H.J. Neese, Z. Anorg. Allg. Chem. 365 (1969) 243.
¨
[18] For intramolecular N–H ꢂ ꢂ ꢂ Cl–M hydrogen bonding, see: M.
Gandelman, A. Vigalok, L.J.W. Shimon, D. Milstein, Organometal-
lics 16 (1997) 3981, and papers quoted in Ref. 16 of this article.
[19] For intermolecular N–H ꢂ ꢂ ꢂ Cl–Ti hydrogen bonding, see: I.A. Guzei,
C.H. Winter, Inorg. Chem. 36 (1997) 4415.
[20] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[21] SMART Software Users Guide, version 5.0, Bruker Analytical X-ray
Systems, Inc., Madison, WI, USA, 1999.
[22] SAINT Software Users Guide, version 6.0, Bruker Analytical X-ray
Systems, Inc., Madison, WI, USA, 1999.
[23] G.M. Sheldrick, SADABS, Bruker Analytical X-ray Systems, Inc.,
Madison, WI, USA, 1999.
3.1.3. [Ti(LH2)Cl4] 3Me
To a solution of 34 mg of TiCl4 (1.8 ꢁ 10ꢀ4 mol) in tol-
uene (2 mL) was added dropwise at ꢀ20 °C a solution of
50 mg (L)H2 (1.77 ꢁ 10ꢀ4 mol) in toluene (2 mL). A brown
precipitate formed immediately, which was separated by fil-
tration and washed with pentane (2 ꢁ 2 mL) to afford
1
75 mg of a brown solid (89% yield). H NMR (CDCl3):
7.87 (s, br, 2H, NH2), 7.37 (m, 1H, CH Ar), 7.21 (m, 5H,
2
CH Ar), 4.35 (t, JH–H = 7.5 Hz, 2H, Ti–N–CH2), 3.73
(m, 2H, ArNH2–CH2), 2.46 (s, 6H, ArMe), 2.37 (m, 2H,
CH2CH2CH2), 2.27 (s, 6H, ArMe). 13C NMR (CDCl3):
143.61, 132.68, 130.88, 130.79, 130.59, 130.12, 129.89,
129.56 (C Ar), 57.48 (TiNCH2), 50.62 (ArNH2–CH2),
25.14 (CH2CH2CH2), 18.92 (ArMe), 17.48 (ArMe). IR (dif-
fuse reflectance, cmꢀ1): 3150 (w), 3058 (w), 2988 (w), 2968
(w), 2925 (w), 1573 (s), 1468 (m), 1383 (m), 1314 (w),
1262.33 (w), 1193 (w), 1169 (m), 1122 (w), 1094 (m), 1030
(m), 993 (m), 944 (m), 911 (m), 902 (m), 844 (m), 826
(m), 783 (s), 744 (m), 708 (m), 677 (m), 666 (m), 653 (m),
615 (m), 600 (m), 575 (m), 562 (m). Raman (cmꢀ1): 953
(m), 904 (s), 850 (s), 761 (w), 715 (s), 676 (w), 616 (s),
538 (s), 524 (m), 514 (m, br), 302 (s), 267 (w), 242 (br,
w). Anal. Calc for C19H26Cl4N2Ti: C, 48.34; H, 5.55; N,
5.93. Found: C, 45.95; H, 5.36; N, 5.80%.
Acknowledgements
`
We thank the CNRS, the ENSCL and the Ministere de
[24] G.M. Sheldrick, SHELXTL, version 5.10, Bruker Analytical X-ray
Systems, Inc., Madison, WI, USA, 1999.
l’Education Nationale et de la Recherche for their financial
support.