A R T I C L E S
Butler et al.
relevant to the current work show how extension of the
nucleobase conjugated system by even a vinyl group12i or
aromatic ring11e,f,12d is sufficient to produce highly emissive
species that are also capable of base pairing.
2-Aminopurine (2-AP), an isomer of adenine, remains perhaps
the simplest functional nucleobase variant that is also fluores-
cent; a high quantum yield (68% in water for the riboside)9c
underlies its widespread usage as an optical probe13 and
continued mechanistic and structural study.14 Even so, molecules
based on this platform have sparsely filtered into traditional
organic materials and related sensing applications,8,15 and in
surprisingly few cases has their optimization and broader
photophysical evaluation (e.g., studies in nonaqueous solution
or the bulk) toward this goal been performed.
Figure 1. Generic structure of the donor-acceptor purines considered in
this work (D ) donor; A ) acceptor; Bn ) benzyl). Important atoms have
been numbered in the conventional way around the purine core.
upon introduction of acceptor substituents to the purine C(8)
position that complement typical donor groups at C(2) and C(6).
The arrangement affords increased quantum yields (in many
cases near unity) and significantly red-shifted absorption/
emission spectra in organic solution (and even water) relative
to the acceptor-free molecules; methyl ester functionalization
of 2-amino-9-benzylpurine, for example, imparts a 13-fold
quantum yield increase in 1,4-dioxane (other derivatives show
up to 25-fold increases). Photophysical studies in multiple
solvents, X-ray crystallography, and theoretical analysis show
how the nature (and position) of the donor and acceptor groups
contribute to the optical parameters, solid-state ordering, and
electronic structure of the purines.
Shown here is how the donor-π-acceptor design, commonly
used to tailor the optical and electronic properties of π-conju-
gated systems,16-19 can be usefully extended to 2-AP and related
purines (Figure 1).20 Significant photophysical changes occur
(10) For recent reviews see:(a) Venkatesan, N.; Seo, Y. J.; Kim, B. H.
Chem. Soc. ReV. 2008, 37, 648–663. (b) Tor, Y. Tetrahedron 2007,
63, 3425–3426. (c) Asseline, U. Curr. Org. Chem. 2006, 10, 491–
518. (d) Wilson, J. N.; Kool, E. T. Org. Biomol. Chem. 2006, 4, 4265–
4274. (e) Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002, 6, 775–
793.
The current investigation includes synthesis of among the first
carboxamide derivatives 3 (Figure 1), that despite bearing a
(11) (a) Srivatsan, S. G.; Weizman, H.; Tor, Y. Org. Biomol. Chem. 2008,
6, 1334–1338. (b) Tor, Y.; Del Valle, S.; Jaramillo, D.; Srivatsan,
S. G.; Rios, A.; Weizman, H. Tetrahedron 2007, 63, 3608–3614. (c)
Srivatsan, S. G.; Tor, Y. Tetrahedron 2007, 63, 3601–3607. (d)
Srivatsan, S. G.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 2044–2053.
(e) Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515–3527. (f) Greco,
N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784–10785.
(12) For additional recent examples:(a) Wilson, J. N.; Cho, Y.; Tan, S.;
Cuppoletti, A.; Kool, E. T. ChemBioChem 2008, 9, 279–285. (b) Seela,
F.; Sirivolu, V. R. Org. Biomol. Chem. 2008, 6, 1674–1687. (c) Sandin,
P.; Bo¨rjesson, K.; Li, H.; Mårtensson, J.; Brown, T.; Wilhelmsson,
L. M.; Albinsson, B. Nucleic Acids Res. 2008, 36, 157–167. (d) Mitsui,
T.; Kimoto, M.; Kawai, R.; Yokoyama, S.; Hirao, I. Tetrahedron 2007,
63, 3528–3537. (e) Mizuta, M.; Seio, K.; Miyata, K.; Sekine, M. J.
Org. Chem. 2007, 72, 5046–5055. (f) Firth, A. G.; Fairlamb, I. J. S.;
Darley, K.; Baumann, C. G. Tetrahedron Lett. 2006, 47, 3529–3533.
(g) Mart´ı, A. A.; Jockusch, S.; Li, Z.; Ju, J.; Turro, N. J. Nucleic Acids
Res. 2006, 34, e50. (h) Sharon, E.; Le´vesque, S. A.; Munkonda, M. N.;
Se´vigny, J.; Ecke, D.; Reiser, G.; Fischer, B. ChemBioChem 2006, 7,
1361–1374. (i) Gaied, N. B.; Glasser, N.; Ramalanjaona, N.; Beltz,
H.; Wolff, P.; Marquet, R.; Burger, A.; Me´ly, Y. Nucleic Acids Res.
2005, 33, 1031–1039. (j) Okamoto, A.; Saito, Y.; Saito, I. J.
Photochem. Photobiol. C 2005, 6, 108–122.
(16) (a) Meier, H. Angew. Chem., Int. Ed. 2005, 44, 2482–2506. (b)
Gompper, R.; Wagner, H.-U. Angew. Chem., Int. Ed. Engl. 1988, 27,
1437–1455.
(17) Recent examples involving small molecules oligomers Davies, J. A.;
Elangovan, A.; Sullivan, P. A.; Olbricht, B. C.; Bale, D. H.; Ewy,
T. R.; Isborn, C. M.; Eichinger, B. E.; Robinson, B. H.; Reid, P. J.;
Li, X.; Dalton, L. R. J. Am. Chem. Soc. 2008, 130, 10565–10575. (b)
Jordan, B. J.; Pollier, M. A.; Ofir, Y.; Joubanian, S.; Mehtala, J. G.;
Sinkel, C.; Caldwell, S. T.; Kennedy, A.; Rabani, G.; Cooke, G.;
Rotello, V. M. Chem. Commun. 2008, 1653–1655. (c) Ort´ız, A.;
Insuasty, B.; Torres, M. R.; Herranz, M. A.; Mart´ın, N.; Viruela, R.;
Ort´ı, E. Eur. J. Org. Chem. 2008, 99–108. (d) Zhou, Y.; Xiao, Y.;
Chi, S.; Qian, X. Org. Lett. 2008, 10, 633–636. (e) Yamaguchi, Y.;
Shimoi, Y.; Ochi, T.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z-i J.
Phys. Chem. B 2008, 112, 5074–5084. (f) Khrarnov, D. M.; Bielawski,
C. W. J. Org. Chem. 2007, 72, 9407–9417. (g) Yuan, M.-S.; Liu,
Z.-Q.; Fang, Q. J. Org. Chem. 2007, 72, 7915–7922. (h) Meier, H.;
Mu¨hling, B.; Gerold, J.; Jacob, D.; Oehlhof, A. Eur. J. Org. Chem.
2007, 625–631. (i) Dufresne, S.; Bourgeaux, M.; Skene, W. G. J.
Mater. Chem. 2007, 17, 1166–1177. (j) Sakai, N.; Sisson, A. L.;
Bhosale, S.; Fu¨rstenberg, A.; Banerji, N.; Vauthey, E.; Matile, S. Org.
Biomol. Chem. 2007, 5, 2560–2563. (k) Oliva, M. M.; Casado, J.;
Raposo, M. M. M.; Fonseca, A. M. C.; Hartmann, H.; Herna´ndez,
V.; Navarrete, J. T. L. J. Org. Chem. 2006, 71, 7509–7520. (l) Lu,
Z.; Lord, S. J.; Wang, H.; Moerner, W. E.; Twieg, R. J. J. Org. Chem.
2006, 71, 9651–9657. (m) Sonoda, Y.; Goto, M.; Tsuzuki, S.; Tamaoki,
N. J. Phys. Chem. A 2006, 110, 13379–13387. (n) Lin, J.-H.;
Elangovan, A.; Ho, T.-I. J. Org. Chem. 2005, 70, 7397–7407. (o)
Andersson, A. S.; Qvortrup, K.; Torbensen, E. R.; Mayer, J.-P.;
Gisselbrecht, J.-P.; Boudon, C.; Gross, M.; Kadziola, A.; Kilså, K.;
Nielsen, M. B. Eur. J. Org. Chem. 2005, 3660–3671. (p) Murase, T.;
Fujita, M. J. Org. Chem. 2005, 70, 9269–9278. (q) Sumalekshmy, S.;
Gopidas, K. R. J. Phys. Chem. B 2004, 108, 3705–3712.
(13) See, for example: Ballin, J. D.; Bharill, S.; Fialcowitz-White, E. J.;
Gryczynski, I.; Gryczynski, Z.; Wilson, G. M. Biochemistry 2007, 46,
13948–13960.
(14) (a) Kodali, G.; Kistler, K. A.; Matsika, S.; Stanley, R. J. J. Phys. Chem.
B 2008, 112, 1789–1795. (b) Bharill, S.; Sarkar, P.; Ballin, J. D.;
Gryczynski, I.; Wilson, G. M.; Gryczynski, Z. Anal. Biochem. 2008,
377, 141–149. (c) Neely, R. K.; Magennis, S. W.; Parsons, S.; Jones,
A. C. ChemPhysChem 2007, 8, 1095–1102. (d) Serrano-Andre´s, L.;
Mercha´n, M.; Borin, A. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
8691–8696. (e) He, R.-X.; Duan, X.-H.; Li, X.-Y. Phys. Chem. Chem.
Phys. 2006, 8, 587–591. (f) Perun, S.; Sobolewski, A. L.; Domcke,
W. Mol. Phys. 2006, 104, 1113–1121. (g) Borin, A. C.; Serrano-
Andre´s, L.; Ludwig, V.; Coutinho, K.; Canuto, S. Int. J. Quantum
Chem. 2006, 106, 2564–2577. (h) Hardman, S. J. O.; Thompson, K. C.
Biochemistry 2006, 45, 9145–9155. (i) Seefeld, K. A.; Plu¨tzer, C.;
Lo¨wenich, D.; Ha¨ber, T.; Linder, R.; Kleinermanns, K.; Tatchen, J.;
Marian, C. M. Phys. Chem. Chem. Phys. 2005, 7, 3021–3026. (j)
Larsen, O. F. A.; van Stokkum, I. H. M.; Groot, M.-L.; Kennis,
J. T. M.; van Grondelle, R.; van Amerongen, H. Chem. Phys. Lett.
2003, 371, 157–163. (l) Rachofsky, E. L.; Ross, J. B. A.; Krauss, M.;
Osman, R. J. Phys. Chem. A 2001, 105, 190–197. (m) Jean, J. M.;
Hall, K. B. J. Phys. Chem. A 2000, 104, 1930–1937. (n) Holme´n, A.;
Norde´n, B.; Albinsson, B. J. Am. Chem. Soc. 1997, 119, 3114–3121.
(o) Evans, K.; Xu, D.; Kim, Y.; Nordlund, T. M. J. Fluoresc. 1992,
2, 209–216.
(18) (a) Buresˇ, F.; Schweizer, W. B.; Boudon, C.; Gisselbrecht, J.-P.; Gross,
M.; Diederich, F. Eur. J. Org. Chem. 2008, 994–1004. (b) Buresˇ, F.;
Schweizer, W. B.; May, J. C.; Boudon, C.; Gisselbrecht, J.-P.; Gross,
M.; Biaggio, I.; Diederich, F. Chem. Eur. J. 2007, 13, 5378–5387. (c)
Michinobu, T.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank, B.;
Moonen, N. N. P.; Gross, M.; Diederich, F. Chem. Eur. J. 2006, 12,
1889–1905. (d) Moonen, N. N. P.; Pomerantz, W. C.; Gist, R.; Boudon,
C.; Gisselbrecht, J.-P.; Kawai, T.; Kishioka, A.; Gross, M.; Irie, M.;
Diederich, F. Chem. Eur. J. 2005, 11, 3325–3341.
(19) (a) Spitler, E. L.; Haley, M. M. Org. Biomol. Chem. 2008, 6, 1569–
1576. (b) Spitler, E. L.; Monson, J. M.; Haley, M. M. J. Org. Chem.
2008, 73, 2211–2223. (c) Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.;
Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464–2476.
(15) D’Souza, F.; Gadde, S.; Islam, D.-M. S.; Pang, S.-C.; Schumacher,
A. L.; Zandler, M. E.; Horie, R.; Araki, Y.; Ito, O. Chem. Commun.
2007, 480–482.
(20) Preliminary results have been published: Butler, R. S.; Myers, A. K.;
Bellarmine, P.; Abboud, K. A.; Castellano, R. K. J. Mater. Chem.
2007, 17, 1863–1865.
9
624 J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009