Insights into Templated Supramolecular Polymerization
A R T I C L E S
been used to organize porphyrins between two strands and to
bind amphiphilic peptides, respectively. Biopolymers, such as
RNA and DNA, have also been used as templates to mimic
their replication nonenzymatically3b and to create non-natural
polymers with a predefined sequence.3c Similarly, the DNA-
templated self-assembly of nanoparticles,7 chromophores,8 and
lipids8 has been reported. Apart from being templates, DNA
and functionalized nucleotides9 can be used as building blocks
to create predefined complex nanosized structures via sticky-
end cohesion.10
For the exploitation of templated polymerizations, it is
essential to develop a deeper understanding of the binding
interaction between the host template and the guest molecules
and that between the guest molecules.3,4,11 For example, to
obtain a so-called all-or-nothing process in which complete
templates are filled one by one, the guest-guest and host-guest
interactions cannot be arbitrary. When the host-guest interaction
is strong and the guest-guest interaction weak, the guest
molecules are uniformly dispersed over all of the available
template binding sites and therefore do not entirely fill any of
the templates, except of course when the overall template
coverage is very high. In the other extreme, a strong guest-guest
interaction could lead to a competition between templated and
nontemplated self-assembly and to very polydisperse aggregates
that are potentially larger on average than the template size.
We have previously shown that two water-soluble guest
report on the templated self-assembly of a newly designed
naphthalene guest molecule G2 on oligothymine templates of
various lengths (denoted as dTq, where q is the number of
thymines), yielding objects whose size is controlled by the length
of the template (Scheme 1). We have redesigned the naphthalene
guest molecule G1 to suppress the nontemplated self-assembly
by replacing the methyl-terminated ethylene oxide with a
hydroxyl-terminated ethylene oxide, yielding guest molecule
G2.13 The self-assembled structures are characterized in detail
with molecular dynamics (MD) simulations, dynamic light
scattering (DLS), and microscopy. Furthermore, we have
developed a theoretical model for guests adsorbing to a linear
template with a finite size in order to gain insight into the
templated supramolecular polymerization process. With this
model, we were able to analyze our experimental findings and
obtain binding energies for both the host-guest and guest-guest
interactions. With the obtained guest-guest interaction energy,
we can determine the correlation length, i.e., the length of
correlated template binding sites, which predicts the way that
the guests are distributed on the template as a function of the
template length.14
Results and Discussion
Nontemplated Self-Assembly. We first compare the nontem-
plated self-assembly of G2 with the earlier reported data for
molecules,
a naphthalene derivative G1 and an oligo
(6) Examples where viruses act as templates: (a) Huang, Y.; Chiang, C.-
Y.; Lee, S. K.; Gao, Y.; Hu, E. L.; De Yoreo, J.; Belcher, A. M. Nano
Lett. 2005, 5, 1429–1434. (b) Mao, C.; Solis, D. J.; Reiss, B. D.;
Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson,
B.; Belcher, A. M. Science 2004, 303, 213–217. (c) Sotiropoulou, S.;
Sierra-Sastre, Y.; Mark, S. S.; Batt, C. A. Chem. Mater. 2008, 20,
821–834.
(p-phenylene)vinylene diaminotriazine derivative, under ap-
propriate conditions bind to a complementary oligothymine
strand (dT40 having 40 thymines), as evidenced by optical and
electrospray ionization (ESI) studies (Scheme 1).12 We observed
that at high concentrations of the guests, nontemplated self-
assembly interferes with the templated self-assembly. We here
(7) Examples of DNA as a structural scaffold to organize particles: (a)
Pinto, Y. Y.; Le, J. D.; Seeman, N. C.; Musier-Forsyth, K.; Taton,
T. A.; Kiehl, R. A. Nano Lett. 2005, 5, 2399–2402. (b) Tang, Z.;
Kotov, N. A. AdV. Mater. 2005, 17, 951–962. (c) Nykypanchuk, D.;
Maye, M. M.; van der Lelie, D.; Gang, O. Nature 2008, 451, 549–
552. (d) Zhang, J.; Liu, Y.; Ke, Y.; Yan, H. Nano Lett. 2006, 6, 248–
251. (e) Gothelf, K. V.; LaBean, T. H. Org. Biomol. Chem. 2005, 3,
4023–4037. (f) Park, S. H.; Yin, P.; Liu, Y.; Reif, J. H.; LaBean, T. H.;
Yan, H. Nano Lett. 2005, 5, 729–733.
(3) Examples and reviews of templated polymerizations: (a) Gons, J.;
Vorenkamp, E. J.; Challa, G. J. Polym. Sci., Part A: Polym. Chem.
1975, 13, 1699–1709. (b) Inoue, T.; Orgel, L. E. Science 1983, 219,
859–862. (c) Inoue, T.; Joyce, G. F.; Grzeskowiak, K.; Orgel, L. E.;
Brown, J. M.; Reese, C. B. J. Mol. Biol. 1984, 178, 669–676. (d)
Kleiner, R. E.; Brudno, Y.; Birnbaum, M. E.; Liu, D. R. J. Am. Chem.
Soc. 2008, 130, 4646–4659. (e) Saito, R. Polymer 2008, 49, 2625–
2631. (f) van Hest, J. C. M. Nat. Chem. Biol. 2008, 4, 272–273. (g)
Clapper, J. D.; Sievens-Figueroa, L.; Guymon, C. A. Chem. Mater.
2008, 20, 768–781.
(8) (a) Iwaura, R.; Hoeben, F. J. M.; Masuda, M.; Schenning, A. P. H. J.;
Meijer, E. W.; Shimizu, T. J. Am. Chem. Soc. 2006, 128, 13298–
13304. (b) Iwaura, R.; Yoshida, K.; Masuda, M.; Ohnishi-Kameyama,
M.; Yoshida, M.; Shimizu, T. Angew. Chem., Int. Ed. 2003, 42, 1009–
1012. (c) Iwaura, R.; Kikkawa, Y.; Ohnishi-Kameyama, M.; Shimizu,
T. Org. Biomol. Chem. 2007, 5, 3450–3455.
(4) Examples of templated supramolecular polymerizations: (a) Lindsey,
J. S. New J. Chem. 1991, 15, 153–180. (b) Sugimoto, T.; Suzuki, T.;
Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2007, 129, 270–271. (c) Bull,
S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.; Messmore, B. W.;
Meade, T. J.; Stupp, S. I. J. Am. Chem. Soc. 2008, 130, 2742–2743.
(d) Ohkawa, H.; Ligthart, G. B. W. L.; Sijbesma, R. P.; Meijer, E. W.
Macromolecules 2007, 40, 1453–1459. (e) Hoogenboom, R.; Fournier,
D.; Schubert, U. S. Chem. Commun. 2008, 155–162. (f) de la Escosura,
A.; Verwegen, M.; Sikkema, F. D.; Comellas-Aragones, M.; Kirilyuk,
A.; Rasing, T.; Nolte, R. J. M.; Cornelissen, J. J. L. M. Chem.
Commun. 2008, 1542–1544. (g) Xu, Y.; Ye, J.; Liu, H.; Cheng, E.;
Yang, Y.; Wang, W.; Zhao, M.; Zhou, D.; Liu, D.; Fang, R. Chem.
Commun. 2008, 49–51. (h) Benvin, A. L.; Creeger, Y.; Fisher, G. W.;
Ballou, B.; Waggoner, A. S.; Armitage, B. A. J. Am. Chem. Soc. 2007,
129, 2025–2034. (i) Hunter, C. A.; Tomas, S. J. Am. Chem. Soc. 2006,
128, 8975–8979.
(9) Examples of chromophores covalently linked to DNA: (a) Krueger,
A. T.; Lu, H.; Lee, A. H. F.; Kool, E. T. Acc. Chem. Res. 2007, 40,
141–150. (b) Kool, E. T. Acc. Chem. Res. 2002, 35, 936–943. (c)
Lewis, F. D.; Zhang, L.; Zuo, X. J. Am. Chem. Soc. 2005, 127, 10002–
10003. (d) Balaz, M.; Holmes, A. E.; Benedetti, M.; Rodriguez, P. C.;
Berova, N.; Nakanishi, K.; Proni, G. J. Am. Chem. Soc. 2005, 127,
4172–4173. (e) Kashida, H.; Asanuma, H.; Komiyama, M. Angew.
Chem., Int. Ed. 2004, 43, 6522–6525.
(10) Examples of 2D and 3D DNA structures: (a) Seeman, N. C. Methods
Mol. Biol. 2005, 303, 143–166. (b) Chen, J.; Seeman, N. C. Nature
1991, 350, 631–633. (c) Rothemund, P. W. K. Nature 2006, 440, 297–
302. (d) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.;
Mao, C. Nature 2008, 452, 198–201.
(11) Recent reviews of template-directed reactions: (a) Pianowski, Z. L.;
Winssinger, N. Chem. Soc. ReV. 2008, 37, 1330–1336. (b) MacGillivray,
L. R. J. Org. Chem. 2008, 73, 3311–3317. (c) Meyer, C. D.; Joiner,
C. S.; Stoddart, J. F. Chem. Soc. ReV. 2007, 36, 1705–1723. (d)
Silverman, A. P.; Kool, E. T. Chem. ReV. 2006, 106, 3775–3789.
(12) (a) Janssen, P. G. A.; Vandenbergh, J.; van Dongen, J. L. J.; Meijer,
E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2007, 129, 6078–
6079. (b) Janssen, P. G. A.; van Dongen, J. L. J.; Meijer, E. W.;
Schenning, A. P. H. J. Chem.sEur. J. [Online early access]. DOI:
10.1002/chem.200801506. Published Online: Nov 28, 2008.
(13) Kuehne, R.; Ebert, R. U.; Kleint, F.; Schmidt, G.; Schueuermann, G.
Chemosphere 1995, 30, 2061–2077.
(5) Recent examples and reviews of bottom-up approaches: (a) Service,
R. F. Science 2005, 309, 95. (b) Schenning, A. P. H. J. Synth. Met.
2004, 147, 43–48. (c) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.;
Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491–1546. (d) Ikkala,
O.; ten Brinke, G. Chem. Commun. 2004, 2131–2137. (e) Ajayaghosh,
A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644–656. (f) Ligthart,
G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Am. Chem.
Soc. 2005, 127, 810–811. (g) Knoben, W.; Besseling, N. A. M.; Stuart,
M. A. C. Macromolecules 2006, 39, 2643–2653. (h) Jonkheijm, P.;
van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Science
2006, 313, 80–83. (i) Smulders, M. M. J.; Schenning, A. P. H. J.;
Meijer, E. W. J. Am. Chem. Soc. 2008, 130, 606–611.
(14) Zimm, B. H.; Bragg, J. K. J. Chem. Phys. 1959, 31, 526–535.
9
J. AM. CHEM. SOC. VOL. 131, NO. 3, 2009 1223