G. Lv et al. / Tetrahedron: Asymmetry 19 (2008) 2568–2572
2571
Compound 4b: Prepared according to the above general proce-
dure, the resulting residue was purified by column chromatogra-
phy on silica gel (CH2Cl2) to give 4b as a white foam. Yield: 83%;
1H NMR (CDCl3, 400 MHz): d (ppm) 3.07 (s, 1H), 4.50 (s, 2H),
4.52 (s, 2H), 4.98 (s, 4H), 5.04 (s, 8H), 6.58 (s, 1H), 6.59 (s, 2H),
6.61 (s, 2H), 6.69 (s, 4H), 7.31–7.47 (m, 24H). 13C NMR (CDCl3,
100 MHz): d (ppm) 70.00, 70.1, 71.53, 72.15, 83.55, 101.44,
101.56, 106.35, 106.66, 127.55, 128.00, 128.6, 132.2, 136.8, 139.3,
140.5, 160.0, 160.1. Anal. Calcd for C58H50O7: C, 81.10; H, 5.87.
Found: C, 81.23; H, 5.79.
53.43, 58.44, 69.92, 70.03, 71.71, 72.01, 101.42, 101.57, 106.02,
106.34, 106.60, 125.64, 127.49, 127.92, 128.21, 128.51, 129.61,
136.72, 138.21, 139.19, 139.31, 140.70, 147.27, 159.95, 160.01,
160.09. Anal. Calcd for C119H108N4O15: C, 77.93; H, 5.94; N, 3.05.
Found: C, 77.86; H, 5.87; N, 3.13.
4.4. General procedure for the dendritic catalysts 5a–c
catalyzed Michael addition reaction of ketones with
nitroolefins
Compound 4c: Prepared according to the above general proce-
dure, the resulting residue was purified by column chromatogra-
phy on silica gel (CH2Cl2) to give 4b as a white foam. Yield: 75%;
1H NMR (CDCl3, 400 MHz): d (ppm) 3.08 (s, 1H), 4.50 (s, 2H),
4.52 (s, 2H), 4.99–5.05 (m, 28H), 6.60–6.72 (m, 21H), 7.31–7.50
(m, 44H). 13C NMR (CDCl3, 100 MHz): d (ppm) 70.00, 70.1, 71.51,
72.11, 83.52, 101.38, 101.58, 106.37, 106.63, 127.51, 127.95,
128.54, 132.14, 136.75, 139.04, 139.18, 139.28, 140.52, 160.04,
160.13. Anal. Calcd for C114H98O15: C, 80.17; H, 5.78. Found: C,
80.21; H, 5.81.
Nitroolefin (0.25 mmol) and 5c (45.6 mg, 10 mol %) were mixed
with ketones (1.25 mmol) in the presence of TFA (2.5 mol %)11 at
room temperature. The homogeneous reaction mixture was stirred
at room temperature for 18 h. The unreacted cyclohexanone was
removed in vacuo, followed by the addition of ether (5 ꢁ 20 mL)
to extract the product thoroughly. The ether solution was com-
bined, and the solvent was reduced under reduced pressure and
was loaded onto a silica gel column to afford the Michael adducts
6a–j as a white solid.
References
4.3. General procedure for the synthesis of 5a–c
1. For reviews regarding organocatalysis, see: (a) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138; (b) Special Issue on Asymmetric Organocatalysis:
Acc. Chem. Res. 2004, 37, 487; (c) Pellissier, H. Tetrahedron 2007, 63, 9267; (d)
Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638; (e) Enders, D.;
Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
Typical procedure: To a solution of 4a–c (2 mmol) with azidom-
ethylpyrrolidine 1 (0.252 g, 2 mmol) in toluene/tBuOH (15 mL,
v:v = 4/1) under argon were added CuI (38.2 mg, 0.2 mmol), DIPEA
(1 mL), the reaction mixture was stirred at room temperature over-
night. After removal of the solvents, the resulting residue was puri-
fied by flash chromatography on silica gel (MeOH–CH2Cl2 = 1:100)
to give 5a–c as a pale yellow foam.
2. (a) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Angew. Chem., Int. Ed.
2006, 45, 3093; (b) Xu, D. Q.; Wang, B. T.; Luo, S. P.; Yue, H. D.; Wang, L. P.; Xu,
Z. Y. Tetrahedron: Asymmetry 2007, 18, 1788; (c) Ni, B. K.; Zhang, Q. Y.; Headley,
A. D. Green Chem. 2007, 737; (d) Wu, L. Y.; Yan, Z. Y.; Xie, Y. X.; Niu, Y. N.; Liang,
Y. M. Tetrahedron: Asymmetry 2007, 18, 2086; (e) Miao, W. S.; Chan, T. H. Adv.
Syn. Catal. 2006, 348, 1711; (f) Zhou, L.; Wang, L. Chem. Lett. 2007, 36, 628; (g)
Ni, B. K.; Zhang, Q. Y.; Headley, A. D. Tetrahedron Lett. 2008, 49, 1249; (h)
Siyutkin, D. E.; Kucherenko, A. S.; Struchkova, M. I.; Zlotin, S. G. Tetrahedron Lett.
2008, 49, 1212; (i) Lombardo, M.; Pasi, F.; Easwar, S.; Trombini, C. Adv. Synth.
Catal. 2007, 349, 2061; (j) Xu, D.; Luo, S.; Yue, H.; Wang, L.; Liu, Y.; Xu, Z. Synlett
2006, 2569; (k) Luo, S.; Zhang, L.; Mi, X.; Qiao, Y.; Cheng, J. P. J. Org. Chem. 2007,
72, 9350; (l) Yang, S. D.; Wu, L. Y.; Yan, Z. Y.; Pan, Z. L.; Liang, Y. M. J. Mol. Catal.
A: Chem. 2007, 268, 107.
3. (a) Alza, E.; Cambeiro, X. C.; Jimeno, C.; Pericas, M. A. Org. Lett. 2007, 9, 3717;
(b) Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericas, M. A. Org. Lett. 2008,
10, 337; (c) Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericas, M. A. Org.
Lett. 2007, 9, 1943; (d) Font, D.; Jimeno, C.; Pericas, M. A. Org. Lett. 2006, 8,
4635; (e) Miao, T.; Wang, L. Tetrahedron Lett. 2008, 49, 2173; (f) Giacalone, F.;
Gruttadauria, M.; Marculescu, A. M.; Noto, R. Tetrahedron Lett. 2007, 48, 255;
(g) Liu, Y. X.; Sun, Y. N.; Tan, H. H.; Liu, W.; Tao, J. C. Tetrahedron: Asymmetry
2007, 18, 2649; (h) Giacalone, F.; Gruttadauria, M.; Marculescu, A. M.; Noto, R.
Adv. Synth. Catal. 2008, 350, 1397; (i) Luo, S. Z.; Li, J. Y.; Zhang, L.; Xu, H.;
Cheng, J. P. Chem. Eur. J. 2008, 14, 1273; (j) Gruttadauria, M.; Giacalone, F.;
Marculescu, A. M.; Meo, P. L.; Riela, S.; Noto, R. Eur. J. Org. Chem. 2007, 28,
4688; (k) Gu, L.; Wu, Y.; Zhang, Y.; Zhao, G. J. Mol. Catal. A: Chem. 2007, 263,
186.
4. (a) Chu, Q. L.; Zhang, W.; Curran, D. P. Tetrahedron Lett. 2006, 47, 9287; (b) Zu, L.
S.; Li, H.; Wang, J.; Yu, X. H.; Wang, W. Tetrahedron Lett. 2006, 47, 5131; (c) Zu,
L.; Xie, H.; Li, H.; Wang, J.; Wang, W. Org. Lett. 2008, 10, 1211; (d) Chu, Q.; Yu, M.
S.; Curran, D. P. Org. Lett. 2008, 10, 749; (e) Zu, L.; Wang, J.; Li, H.; Wang, W. Org.
Lett. 2006, 8, 3077.
5. (a) Xu, D. Q.; Luo, S. P.; Wang, Y. F.; Xia, A. B.; Yue, H. D.; Wang, L. P.; Xu, Z. Y.
Chem. Commun. 2007, 4393; (b) Benaglia, M.; Cinquini, M.; Cozzi, F.; Puglisi, A.;
Celentano, G. Adv. Synth. Catal. 2002, 344, 533; (c) Chai, L. T.; Wang, Q. R.; Tao, F.
G. J. Mol. Catal. A: Chem. 2007, 276, 137; (d) Puglisi, A.; Benaglia, M.; Cinquini,
M.; Cozzi, F.; Celentano, G. Eur. J. Org. Chem. 2004, 25, 567; (e) Benaglia, M.;
Celentano, G.; Cinquini, M.; Puglisi, A.; Cozzi, F. Adv. Synth. Catal. 2002, 344,
149.
Compound 5a: Prepared according to the above general proce-
dure, the resulting residue was purified by column chromatogra-
phy on silica gel (MeOH–CH2Cl2 = 1:100) to give 5a as a pale
yellow foam. Yield: 72%; ½a D20
ꢀ
¼ þ9:1 (c 1, CH2Cl2), 1H NMR (CDCl3,
400 MHz): d (ppm) 1.53 (m, 1H), 1.78 (m, 2H), 1.98 (m, 1H), 2.99
(m, 2H), 3.69 (m, 1H), 4.30 (m, 1H), 4.45 (m, 1H), 4.50 (s, 2H),
4.54 (s, 2H), 5.03 (s, 4H), 6.56 (s, 1H), 6.63 (s, 2H), 7.29–7.43 (m,
12H), 7.80 (d, 2H), 7.95 (s, 1H). 13C NMR (CDCl3, 100 MHz): d
(ppm) 25.14, 28.94, 29.66, 46.40, 54.60, 59.19, 70.04, 71.74,
72.03, 101.38, 106.63, 125.69, 127.49, 127.93, 128.25, 128.54,
129.89, 136.84, 138.15, 140.65, 147.3, 160.04. Anal. Calcd for
C35H36N4O3: C, 74.98; H, 6.47; N, 9.99. Found: C, 74.87; H, 6.41;
N, 10.08.
Compound 5b: Prepared according to the above general proce-
dure, the resulting residue was purified by column chromatogra-
phy on silica gel (MeOH–CH2Cl2 = 1:100) to give 5b as a pale
yellow foam. Yield: 56%; ½a D20
ꢀ
¼ þ4:5 (c 1, CH2Cl2), 1H NMR (CDCl3,
400 MHz): d (ppm) 1.58 (m, 1H), 1.83 (m, 2H), 2.03 (m, 1H), 3.05
(m, 2H), 3.77 (m, 1H), 4.47 (m, 2H), 4.51 (s, 2H), 4.54 (s, 2H),
4.98 (s, 4H), 5.03 (s, 8H), 6.54 (s, 1H), 6.58 (s, 2H), 6.63 (s, 2H),
6.69 (s, 4H), 7.30–7.42 (m, 42H), 7.72 (d, 2H), 7.88 (s, 1H). 13C
NMR (CDCl3, 100 MHz): d (ppm) 25.12, 28.93, 29.62, 46.38, 54.60,
59.19, 69.93, 70.04, 71.76, 72.03, 101.43, 101.57, 106.34, 106.64,
125.70, 127.53, 127.96, 128.27, 128.54, 129.89, 136.76, 138.19,
139.32, 140.68, 147.3, 159.96, 160.14. Anal. Calcd for
C63H60N4O7: C, 76.81; H, 6.14; N, 5.69. Found: C, 76.76; H, 6.09;
N, 5.81.
6. (a) Zhang, Y. G.; Zhao, L.; Lee, S. S.; Ying, J. Y. Adv. Synth. Catal. 2006, 348, 2027;
(b) Selkala, S. A.; Tois, J.; Pihko, P. M.; Koskinen, A. M. P. Adv. Synth. Catal. 2002,
344, 941; (c) Li, P. H.; Wang, L.; Zhang, Y. C.; Wang, G. W. Tetrahedron 2008, 64,
7633; (d) Zhao, Y. B.; Zhang, L. W.; Wu, L. Y.; Li, R.; Ma, J. T. Tetrahedron:
Asymmetry 2008, 19, 1352.
7. (a) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. W. Org. Lett. 2006, 8, 4417; (b)
Liu, Y. H.; Shi, M. Adv. Synth. Catal. 2008, 350, 122; (c) Li, Y. W.; Liu, X. Y.; Zhao,
G. Tetrahedron: Asymmetry 2006, 17, 2034.
8. For selected examples of the organocatalytic asymmetric Michael addition to
nitroolefins, see: (a) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5,
2559; (b) Tian, S.; Ran, H.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900; (c) Tian, S.
K.; Chen, Y. G.; Hang, J. F.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37,
621; (d) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng,
L. Angew. Chem., Int. Ed. 2005, 44, 105; (e) Okino, T.; Hoashi, Y.; Furukawa, T.;
Compound 5c: Prepared according to the above general proce-
dure, the resulting residue was purified by column chromatogra-
phy on silica gel (MeOH–CH2Cl2 = 1:100) to give 5c as a pale
yellow foam. Yield: 40%; ½a D20
ꢀ
¼ þ2:8 (c 1, CH2Cl2), 1H NMR (CDCl3,
400 MHz): d (ppm) 1.53 (m, 1H), 1.77 (m, 2H), 1.98 (m, 1H), 2.99
(m, 2H), 3.71 (m, 1H), 4.37 (m, 2H), 4.47 (s, 2H), 4.50 (s, 2H),
4.93 (s, 8H), 4.94 (s, 4H), 4.98 (s, 16H), 6.53 (m, 6H), 6.61 (m,
3H), 6.65 (m, 12H), 7.30–7.39 (m, 22H), 7.77 (d, 2H), 7.96 (s, 1H).
13C NMR (CDCl3, 100 MHz): d (ppm) 24.77, 28.67, 29.65, 46.18,