6442 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 22
Letters
(4) Nagakura, T.; Vasuda, N.; Yamazaki, K.; Ikuta, H.; Yoshikawa, S.;
Asano, O.; Tanaka, I. Improved glucose tolerance via enhanced
glucose-dependent insulin secretion in dipeptidyl peptidase IV-
deficient Fisher rats. Biochem. Biophys. Res. Commun. 2001, 284,
501-506.
(5) (a) Reimer, M. K.; Holst, J. J.; Ahren, B. Long-term inhibition of
dipeptidyl peptidase IV improves glucose tolerance and preserves
islet function in mice. Eur. J. Endocrinol. 2002, 146, 717-727. (b)
Pospisilik, A.; Martin, J.; Doty, T.; Ehses, J. A.; Pamir, N.; Lynn, F.
C.; Piteau, S.; Demuth, H.-U.; McIntosh, C. H. S.; Pederson, R. A.
Dipeptidyl peptidase IV inhibitor treatment stimulates â-cell survival
and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes
2003, 52, 741-750.
(6) (a) Ahre´n, B.; Simonsson, E.; Larsson, H.; Landin-Olsson, M.;
Torgeirsson, H.; Jansson, P.-A.; Sandqvist, M.; Bavenholm, P.;
Efendic, S.; Eriksson, J. W.; Dickinson, S.; Holmes, D. Inhibition
of dipeptidyl peptidase IV improves metabolic control over a 4-week
study period in type 2 diabetes. Diabetes Care 2002, 25, 869-75.
(b) Ahre´n, B.; Gomis, R.; Standl, E.; Mills, D.; Schweizer, A. Twelve-
and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237
in metformin-treated patients with type 2 diabetes. Diabetes Care
2004, 27, 2874-2880. (c) Ahre´n, B.; Landing-Olsson, L.; Jansson,
P.-A.; Sevensson, M.; Holmes, D.; Schweizer, A. Inhibition of
dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and
reduces glucagon levels in type 2 diabetes. J. Clin. Endocrinol. Metab.
2004, 89, 2078-2084. (d) Ahre´n, B.; Pacini, G.; Foley, J. E.;
Schweizer, A. Improved meal-related â-cell function and insulin
sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in
metformin-treated patients with type 2 diabetes over 1 year. Diabetes
Care 2005, 28, 1936-1940.
(7) For reviews, see (a) Weber, A. E. Dipeptidyl peptidase IV inhibitors
for the treatment of diabetes. J. Med. Chem. 2004, 47, 4135-4141.
(b) Wiedeman, P. E.; Trevillyan, J. M. Dipeptidyl peptidase IV
inhibitors for the treatment of impaired glucose tolerance and type 2
diabetes. Curr. Opin. InVestig. Drugs 2003, 4, 412-420. (c) Deacon,
C. F.; Ahren, B.; Holst, J. Inhibitors of dipeptidyl peptidase IV: A
novel approach for the prevention and treatment of type 2 diabetes?
Expert. Opin. InVestig. Drugs 2004, 13, 1091-1102. (d) Drucker,
D. J. Enhancing incretin action for the treatment of type 2 diabetes.
Diabetes Care 2003, 26, 2929-2940. (e) Villhauer, E. B.; Coppola,
G. M; Hughes, T. E. DPPIV inhibition and therapeutic potential. Ann.
Reports Med. Chem. 2001, 36, 191-200.; (f) Gwaltney, S. L., II;
Stafford, J. A. Inhibitors of Dipeptidyl Peptidase 4. Annu. Rep. Med.
Chem. 2005, 40, 149-165.
(8) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.;
Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes,
T. E. 1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrro-
lidine: A potent, selective, and orally bioavailable dipeptidyl
peptidase IV inhibitor with antihyperglycemic properties. J. Med.
Chem. 2003, 46, 2774-2789.
(9) Augeri, D. J.; Robl, J. A.; Betebenner, D. A.; Magnin, D. R.; Khanna,
A.; Robertson, J. G.; Wang, A.; Simpkins, L. M.; Taunk, P.; Huang,
Q.; Han, S.-P.; Abboa-Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo,
E.; Welzel, G. E.; Egan, D. M.; Marcinkeviciene, J.; Chang, S. Y.;
Biller, S. A.; Kirby, M. S.; Parker, R. A.; Hamann, L. G. Discovery
and preclinical profile of saxagliptin (BMS-477118): A highly potent,
long-acting, orally active dipeptidyl peptidase IV inhibitor for the
treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 5025-5037.
(10) Mest, H.-J. Dipeptidyl peptidase-IV inhibition can restore glucose
homeostasis in type 2 diabetics via incretin enhancement. Curr. Opin.
InVest. Drugs 2006, 7, 338-343.
(11) Abbott, C. A.; Yu, D. M. T.; Woollatt, E.; Sutherland, G. R.;
McCaughan, G. W.; Gorrell, M. D. Cloning, expression, and
chromosomal localization of a novel human dipeptidyl peptidase
(DPP) IV homolog, DPP8. Eur. J. Biochem. 2000, 267, 6140-6150.
(12) Ajami, K.; Abbott, C. A.; McCaughan, G. W.; Gorrell, M. D.
Dipeptidyl peptidase 9 has two forms, a broad tissue distrubution,
cytoplasmic localization, and DPP-like peptidase activity. Biochem.
Biophys. Acta 2004, 1679, 18-28.
(13) Lankas, G. R.; Leiting, B.; Roy, R. S.; Eiermann, G. J.; Beconi, M.
G.; Biftu, T.; Chan, C.-C.; Edmondson, S.; Feeney, W. P.; He, H.;
Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov,
A. N.; Pryor, K. A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.;
Zaller, D.; Zhang, Z.; Zhu, L.; Weber, A. E.; Thornberry, N. A.
Dipeptidyl peptidase IV inhibition for the treatment of type 2
diabetes: Potential importance of selectivity over dipeptidyl pepti-
dases 8 and 9. Diabetes 2005, 54, 2988-2994.
(14) Larsen, J.; Hylleberg, B.; Ng, K.; Damsbo, P. Glucagon-like peptide-1
infusion must be maintained for 24 h/day to obtain acceptable
glycemia in type 2 diabetic patients who are poorly controlled on
sulphonylurea treatment. Diabetes Care 2001, 24, 1416-1421.
(15) Balas, B.; Baig, M.; Watson, C.; Dunning, B. E.; Ligueros-Saylan,
M.; He, Y.-L.; Wang, B.; Cusi, K.; Foley, J. E.; Defranzo, R. A.
Vildagliptin supresses endogenous glucose production (EGP) and
increases beta cell function after single dose administration in type
2 diabetic (T2D) patients. American Diabetes Association 66th
Scientific Session, Washington DC, 2006, 122-OR.
(16) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He,
H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio,
F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.;
Sinha, R. R.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.;
Thornberry, N. A.; Weber, A. E. (2R)-4-Oxo-4-[3-(trifluoromethyl)-
5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluo-
rophenyl)-butan-2-amine: A potent, orally active dipeptidyl peptidase
IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2005,
48, 141-151.
(17) Gwaltney, S. L.; Aertgeerts, K.; Feng, J.; Kaldor, S. W.; Kassel, D.
B.; Manuel, M.; Navre, M.; Prasad, S. G.; Shi, L.; Skene, R. J.;
Stafford, J. A.; Wallace, M.; Xu, R.; Ye, S.; Zhang, Z. Abstracts of
Papers, 231st Meeting of the American Chemical Society, Atlanta,
GA, 2006, MEDI-018.
(18) Madar, D. J.; Kopecka, H.; Pireh, D.; Yong, H.; Pei, Z.; Li, X.;
Wiedeman, P.; Djuric, S. W.; von Geldern, T. W.; Fickes, M.;
Bhagavatula, L.; McDermott, T.; Wittenberger, S.; Longenecker, K.;
Stewart, K.; Lubben, T. H.; Ballaron, S. J.; Stashko, M. A.; Long,
M.; Wells, H.; Zinker, B. A.; Mika, A. K.; Beno, D. W. A.; Kempf-
Grote, A. J.; Polakowski, J.; Segreti, J.; Reinhart, G. A.; Fryer, R.;
Sham, H. L.; Trevilliyan, J. M. Discovery of 2-[4-{{2-(2S,5R)-2-
cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]-4-methyl-1-pip-
eridinyl]-4-pyridinecarboxylic acid (ABT-279): A very potent,
selective, effective, and well-tolerated inhibitor of dipeptidyl pepti-
dase-IV, useful for the treatment of diabetes. J. Med. Chem. Published
ASAP, Sept. 23, 2006.
(19) For details of assay conditions, see: Pei, Z.; Li, X.; Longenecker,
K.; von Geldern, T. W.; Wiederman, P. E.; Lubben, T. H.; Zinker,
B. A.; Stewart, K.; Ballaron, S. J.; Stashko, M. A.; Mika, A. K.;
Beno, D. W. A.; Long, M.; Wells, H.; Kempf-Grote, A. J.; Madar,
D. J.; McDermott, T. S.; Bhagavatula, L.; Fickes, M. G.; Pireh, D.;
Solomon, L. R.; Lake, M. R.; Edalji, R.; Fry, E. H.; Sham, H. L.;
Trevilyan, J. M. Discovery, structure-activity relationship, and
pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-
2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors. J.
Med. Chem. 2006, 49, 3520-3535.
(20) For a recent example, see: (a) Knobloch, K.; Keller, M.; Eberbach,
W. The synthesis of annulated azepin-3-one derivatives from 1,3,4-
pentatrienyl nitrones by a heterocyclization-rearrangement sequence.
Eur. J. Org. Chem. 2001, 3313-3332. (b) For a review, see: Marson,
C. M. Reactions of carbonyl compounds with (monohalo) methyl-
eniminium salts (Vilsmeier reagents). Tetrahedron 1992, 48, 3695-
3726.
(21) Refined crystallographic coordinates for the structures of DPP4
complexed with 25 have been deposited in Protein Data Bank
(22) See Supporting Information for details.
(23) (a) Bruk, D.; Wedd, D.; Burlinson, B. Use of the Miniscreen assay
to screen novel compounds for bacterial mutagenicity in the
pharmaceutical industry. Mutagenesis 1996, 11, 201-205. (b)
Ciaravino, V.; Suto, M. J.; Theiss, J. C. High capacity in vitro
micronucleus assay for the assessment of chromosome damage:
results with quinolone/napthyridone antibacterials. Mutat. Res. 1993,
298, 227-236.
(25) Fryer, R. M.; Preusser, L. C.; Calzadilla, S. V.; Hu, Y.; Xu, H.; Marsh,
K. C.; Cox, B. F.; Lin, C. T.; Gopalakrishnan, M.; Reinhart, G. A.
(-)-(9S)-9-(3-Bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydro-thieno-
[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a novel ATP-
sensitive potassium channel opener: Hemodynamic comparison to
ZD-6169, WAY-133537, and nifedipine in the anesthetized canine.
J. CardioVasc. Pharmacol. 2004, 44, 137-147.
JM060955D