70
T. Takanami et al. / Tetrahedron Letters 50 (2009) 68–70
Crossley, M. J.; Gosper, J. J.; Harding, M. M.; Officer, D. L.; Reid, D. C. W. J.
Porphyrins Phthalocyanines 2002, 6, 708–719; (f) Higuchi, H.; Shimizu, K.;
Takeuchi, M.; Ojima, J.; Sugiura, K.; Sakata, Y. Bull. Chem. Soc. Jpn. 1997, 70,
1923–1933; (g) Torpey, J. W.; Ortiz de Montellano, P. R. J. Org. Chem. 1996, 60,
2195–2199; (h) Arnold, D.; Johnson, A. W.; Winter, M. J. Chem. Soc., Perkin
Trans. 1 1977, 1643–1647.
tion with PyMe2SiCH2Li, followed by hydrolysis and aerobic oxida-
tion at ambient O2 pressure. This process can readily accommodate
a wide variety of substrates including 5,15-dialkyl- and 5,15-dia-
ryl-substituted free-base porphyrins and their metal complexes,
affording the corresponding meso-hydroxymethylporphyrins in
good yields. Further investigations into the utility of the products,
that is, meso-hydroxymethylporphyrins, as building blocks for the
construction of porphyrin derivatives that show various useful
functions are currently underway.
7. This stepwise method also presents the following limitations: The substrate
porphyrins are restricted to only Ni(II) and Cu(II) complexes which lack acid-
sensitive functional groups, as the Vilsmeier formylation and related reactions
require the use of strong acidic conditions. For reviews, see: (a) Balakumar, A.;
Muthukumaran, K.; Lindsey, J. S. J. Org. Chem. 2004, 69, 5112–5115; (b)
Ponomarev, G. V. Chem. Heterocycl. Compd. 1994, 30, 1444–1465.
8. Multi-step total syntheses of hydroxymethyl-substituted porphyrins have been
reported by Lindsey et al. (see Refs. 5a,b).
Acknowledgments
9. (a) Itami, K.; Mitsudo, K.; Yoshida, J. Tetrahedron Lett. 1999, 40, 5533–5536; (b)
Itami, K.; Mitsudo, K.; Yoshida, J. Tetrahedron Lett. 1999, 40, 5537–5540; (c)
Itami, K.; Kamei, T.; Mitsudo, K.; Nokami, T.; Yoshida, J. J. Org. Chem. 2001, 66,
3970–3976.
10. The choice of oxidation conditions is of critical importance to the syntheses of
porphyrins via dihydroporphyrins, and a variety of oxidants and oxidative acid
catalysts have been exploited for this purpose, see: (a) Lindsey, J. S. In The
Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: San Diego, 2000; Vol. 1, p 45; (b) Johnstone, R. A. W.; Nunes, M. L. P. G.;
Pereira, M. M.; Gonsalves, M. d’A. R.; Serra, A. C. Heterocycles 1996, 43, 1423–
1437 and references cited therein.
This work was partly supported by a Grant-in-Aid for Scientific
Research (KAKENHI) from JSPS and by a Special Grant (GAKUCHO-
GRANT) from Meiji Pharmaceutical University.
References and notes
1. The Porphyrin Handbook; Smith, K. M., Guilard, R., Eds.; Academic Press: San
Diego, 1999–2003, Vols. 1–20.
11. These reaction conditions seem to lead to decomposition of porphyrin
derivatives involved in the reaction; oxidative ring-opening degradation of
porphyrins to linear tetrapyrrolic compounds under aerobic conditions has
been reported: (a) Asano, N.; Uemura, S.; Kinugawa, T.; Akasaka, H.; Mizutani,
T. J. Org. Chem. 2007, 72, 5320–5326; (b) Yamauchi, T.; Mizutani, T.; Wada, K.;
Horii, S.; Furukawa, H.; Masaoka, S.; Chang, H.-C.; Kitagawa, S. Chem. Commun.
2005, 1309–1311; (c) Kumar, D.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2005,
2. We have developed porphyrin-based Lewis acid catalysts that can promote
regio- and stereo selective isomerization of epoxides to carbonyl compounds
and Claisen rearrangement of allylvinyl ethers, see: (a) Suda, K.; Baba, K.;
Nakajima, S.; Takanami, T. Chem. Commun. 2002, 2570–2571; (b) Suda, K.;
Kikkawa, T.; Nakajima, S.; Takanami, T. J. Am. Chem. Soc. 2004, 126, 9554–9555;
(c) Takanami, T.; Hayashi, M.; Suda, K. Tetrahedron Lett. 2005, 46, 2893–2896;
(d) Takanami, T.; Hayashi, M.; Iso, K.; Nakamoto, H.; Suda, K. Tetrahedron 2006,
62, 9467–9474; (e) Takanami, T.; Nakajima, S.; Nakadai, S.; Hino, F.; Suda, K.
_
127, 8204–8213; (d) Kalish, H.; Lee, H. M.; Olmstead, M. M.; Latos-Grazyn´ ski,
L.; Rath, S. P.; Balch, A. L. J. Am. Chem. Soc. 2003, 125, 4674–4675 and references
cited therein.
12. Typical procedure for the one-pot hydroxymethylation of 5,15-disubstituted
porphyrins: An oven-dried 100 mL round-bottomed flask equipped with a
magnetic stirring bar and a three-way stopcock was charged with a porphyrin
1 (0.1 mmol). The flask was evacuated and flushed with argon (three times),
and then absolute THF (40 mL) was added. To the solution was added an
ethereal solution of PyMe2SiCH2Li (prepared by adding 0.65 mL of 1.58 M tBuLi
in pentane to a solution of 1.2 mmol 2-pyridyltrimethylsilane in 1.5 mL of
ether, followed by stirring at À78 °C for 2 h)9 via a cannula at À78 °C. After
being stirred at À78 °C for 5 min, the cooling bath was removed and the
mixture was stirred at room temperature. The reaction was complete within
3 h, having been monitored by TLC. Upon completion of the reaction, the
mixture was cooled to 0 °C, and then 5 mL of H2O was added. After being
stirred at 0 °C for 10 min, the mixture was stirred under O2 (using a balloon) at
room temperature for 1–5 h, and poured into brine. The organic layer was
separated, and the aqueous layer was extracted with CH2Cl2. The organic layers
were combined, concentrated in vacuo, and subjected to chromatography on
silica gel using 2–10% hexane/CH2Cl2 as an eluent to give the meso-
hydroxymethylporphyrin 3. All the compounds reported herein showed
spectral data consistent with the assigned structures. Selected data: For 3a:
1H NMR (CDCl3) d: 10.20 (1H, s), 9.66 (2H, d, J = 4.7 Hz), 9.30 (2H, d, J = 4.4 Hz),
9.04 (2H, d, J = 4.7 Hz), 8.98 (2H, d, J = 4.4 Hz), 8.22 (4H, d, J = 6.6 Hz), 7.86–7.74
(6H, m), 7.02 (2H, s), 3.73 (1H, br), À3.14 (2H, s); IR (KBr): 3308, 1597, 1561,
3. For some examples of recent leading works on porphyrin functionalization
reactions, see: (a) Chen, Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 4432–4438; (b)
Gao, G. Y.; Colvin, A. J.; Chen, Y.; Zhang, X. P. Org. Lett. 2003, 5, 3261–3264; (c)
Hata, H.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc. 2005, 127, 8264–8265; (d)
Liu, C.; Shen, D.-M.; Chen, Q.-Y. J. Org. Chem. 2007, 72, 2732–2736; (e) Gao, G.-
Y.; Ruppel, J. V.; Allen, D. B.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 9060–
9066; (f) Matano, Y.; Shinokura, T.; Matsumoto, K.; Imahori, H.; Nakano, H.
Chem. Asian J. 2007, 2, 1417–1429; (g) Horn, S.; Sergeeva, N. N.; Senge, M. O. J.
Org. Chem. 2007, 72, 5414–5417; (h) Matano, Y.; Matsumoto, K.; Nakao, Y.; Uno,
H.; Sakaki, S.; Imahori, H. J. Am. Chem. Soc. 2008, 130, 4588–4589; (i) Gao, G.-Y.;
Ruppel, J. V.; Fields, K. B.; Xu, X.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2008, 73,
4855–4858; (j) Yamada, H.; Kushibe, K.; Mitsuogi, S.; Okujima, T.; Uno, H.; Ono,
N. Tetrahedron Lett. 2008, 49, 4731–4733; (k) Mizumura, M.; Shinokubo, H.;
Osuka, A. Angew. Chem., Int. Ed. 2008, 47, 5378–5381 and references cited
therein.
4. Senge et al. have developed a unique, yet useful, method for the preparation of
meso-substituted porphyrins utilizing an SNAr reaction with organolithium
reagents: (a) Senge, M. O. Acc. Chem. Res. 2005, 38, 733–743; (b) Senge, M. O.;
Hatscher, S. S.; Wiehe, A.; Dahms, K.; Kelling, A. J. Am. Chem. Soc. 2004, 126,
13634–13635; (c) Dahms, K.; Senge, M. O.; Bakar, M. B. Eur. J. Org. Chem. 2007,
3833–3848 and references cited therein.
5. We have reported several functionalization reactions of porphyrins: (a)
Takanami, T.; Hayashi, M.; Hino, F.; Suda, K. Tetrahedron Lett. 2003, 44, 7353–
7357; (b) Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Suda, K. Org.
Lett. 2005, 7, 3937–3940; (c) Takanami, T.; Wakita, A.; Sawaizumi, A.; Iso, K.;
Onodera, H.; Suda, K. Org. Lett. 2008, 10, 685–687; (d) Takanami, T.; Yotsukura,
M.; Inoue, W.; Inoue, N.; Hino, F.; Suda, K. Heterocycles 2008, 76, 439–453.
6. (a) Yao, Z.; Bhaumik, J.; Dhanalekshmi, S.; Ptaszek, M.; Rodriguez, P. A.; Lindsey,
J. S. Tetrahedron 2007, 63, 10657–10670; (b) Tamiaki, H.; Kumon, K.; Shibata, R.
J. Porphyrins Phthalocyanines 2007, 11, 434–441; (c) Carcel, C. M.; Laha, J. K.;
Loewe, R. S.; Thamyongkit, P.; Schweikart, K.-H.; Misra, V.; Bocian, D. F.;
Lindsey, J. S. J. Org. Chem. 2004, 69, 6739–6750; (d) Balaban, T. S.; Bhise, A. D.;
Fischer, M.; Linke-Schaetzel, M.; Roussel, C.; Vanthuyne, N. Angew. Chem., Int.
Ed. 2003, 42, 2140–2144; (e) Bonfantini, E. E.; Burrell, A. K.; Campbell, W. M.;
1484, 1440, 1406, 976, 957, 921, 850, 794, 724, 704 cmÀ1
;
HRMS-FAB+
([M+H]+): calcd for C33H25N4O: 493.2028. Found 493.2023. For 3f: 1H NMR
(CDCl3) d: 10.21 (1H, s), 9.68 (2H, d, J = 4.9 Hz), 9.32 (2H, d, J = 4.8 Hz), 9.03 (2H,
d, J = 4.9 Hz), 8.97 (2H, d, J = 4.8 Hz), 8.16 (4H, d, J = 7.9 Hz), 7.90 (4H, d,
J = 7.9 Hz), 7.03 (2H, s), 3.73 (1H, br), 1.33–1.01 (42H, m), À3.16 (2H, s); IR
(KBr): 3614, 2943, 2866, 2152, 1651, 1550, 1466, 1068, 995, 798, 671 cmÀ1
HRMS-FAB+ ([M+H]+): calcd for C55H65N4OSi2: 853.4697. Found 853.4703.
;
13. Kurti, L.; Czako, B. In Strategic Applications of Named Reactions in Organic
Synthesis; Elsevier: Oxford, 2005; p 174.
14. It is known that molecular oxygen and hydrogen peroxide can serve as
an oxidant for the conversion of dihydroporphyrins into porphyrins, see
Ref. 10