Novel β-arrestin-biased β2-adrenoceptor agonists
AYH Woo et al.
10
ACKNOWLEDGEMENTS
16. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL,
et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the
failing human heart. J Clin Invest. 1988;82:189–97.
17. Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, et al. Gi-biased
β2AR signaling links GRK2 upregulation to heart failure. Circ Res. 2012;110:
265–74.
We thank Dr. Joseph Kozocas from SRI international, California, USA for providing
(R,R’)-FEN and (R,R’)-MNF for the analysis and Dr. Wei Liang and his team from WuXi
AppTec, Shanghai, China for technical assistance in the cAMP assay. This work was
supported by the Ministry of Science and Technology of the People’s Republic of
China under the National Key Research and Development Program of China [grant
number 2018YFA0507603 (to R-PX)], the National Science and Technology Major
Project [grant numbers 2013ZX09507001-001002 (to AY-HW), 2013ZX09301305-001
(to LP), 2013ZX09508104 (to R-PX), 2018ZX09739009 (to M-SC)], the National Basic
Research Program [grant number 2012CB518000 (to R-PX)], the National Natural
Science Foundation of China [grant numbers 81673355 (to AY-HW), 81872752 (to M-
18. Sato M, Gong H, Terracciano CM, Ranu H, Harding SE. Loss of β-adrenoceptor
response in myocytes overexpressing the Na+/Ca2+-exchanger. J Mol Cell Car-
diol. 2004;36:43–48.
19. Xiao RP, Balke CW. Na+/Ca2+ exchange linking beta2-adrenergic Gi signaling to
heart failure: associated defect of adrenergic contractile support. J Mol Cell
Cardiol. 2004;36:7–11.
SC), 31521062, 81630008, 81790621 (to R-PX)], Beijing Municipal Science
&
Technology Commission [grant number Z171100000417006 (to R-PX)], and the
intramural research program of the NIH, USA (to IWW).
20. Zhu W, Zeng X, Zheng M, Xiao RP. The enigma of beta2-adrenergic receptor Gi
signaling in the heart: the good, the bad, and the ugly. Circ Res. 2005;97:
507–9.
21. Xiao RP, Zhang SJ, Chakir K, Avdonin P, Zhu W, Bond RA, et al. Enhanced Gi
signaling selectively negates β2-AR– but not β1-AR–mediated positive inotropic
effect in myocytes from failing rat hearts. Circulation. 2003;108:1633–9.
22. Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, Talan MI. Beneficial effects of
chronic pharmacological manipulation of β-adrenoceptor subtype signaling in
rodent dilated ischemic cardiomyopathy. Circulation. 2004;110:1083–99.
23. Ahmet I, Lakatta EG, Talan M. Pharmacological stimulation of β2-adrenergic
receptors (β2AR) enhances therapeutic effectiveness of β1AR blockade in rodent
dilated ischemic cardiomyopathy. Heart Fail Rev. 2005;10:289–96.
24. Ahmet I, Krawczyk M, Zhu W, Woo AY, Morrell C, Poosala S, et al. Cardioprotective
and survival benefits of long-term combined therapy with β2AR agonist and β1AR
blocker in dilated cardiomyopathy post-myocardial infarction. J Pharmacol Exp
Ther. 2008;325:491–9.
AUTHOR CONTRIBUTIONS
AYHW designed the research, performed the research, analyzed the data, and wrote
the paper; XYG performed the research, analyzed the data, and wrote the paper; and
YYZ analyzed the data. LP performed the research and contributed new reagents or
analytical tools; XRL, YMM, GX and RJX performed the research; IWW contributed new
reagents or analytical tools; and MSC and RPX contributed new reagents or analytical
tools and supervised the research.
ADDITIONAL INFORMATION
contains supplementary material, which is available to authorized users.
25. Ahmet I, Morrell C, Lakatta EG, Talan MI. Therapeutic efficacy of a combination of
a beta1-adrenoreceptor (AR) blocker and beta2-AR agonist in a rat model of
postmyocardial infarction dilated heart failure exceeds that of a beta1-AR blocker
Competing interests: The authors declare no competing interests.
plus angiotensin-converting enzyme inhibitor.
J
Pharmacol Exp Ther.
2009;331:178–85.
REFERENCES
26. Chakir K, Depry C, Dimaano VL, Zhu WZ, Vanderheyden M, Bartunek J, et al.
Galphas-biased beta2-adrenergic receptor signaling from restoring synchronous
contraction in the failing heart. Sci Transl Med. 2011;3(100):100ra88.
27. Woo AY, Song Y, Xiao RP, Zhu W. Biased β2-adrenoceptor signalling: pathophy-
siology and drug discovery. Br J Pharmacol. 2015;172:5444–56.
28. Beigi F, Bertucci C, Zhu W, Chakir K, Wainer IW, Xiao RP, et al. Enantioselective
separation and online affinity chromatographic characterization of R,R- and S,S-
fenoterol. Chirality. 2006;18:822–7.
1. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat
Rev Drug Discov. 2006;5:993–6.
2. Kenakin T. Collateral efficacy in drug discovery: taking advantage of the good
(allosteric) nature of 7TM receptors. Trends Pharmacol Sci. 2007;28:407–15.
3. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, et al.
Functional selectivity and classical concepts of quantitative pharmacology.
J Pharmacol Exp Ther. 2007;320:1–13.
4. Mailman RB. GPCR functional selectivity has therapeutic impact. Trends Phar-
macol Sci. 2007;28:390–6.
5. Seifert R, Dove S. Functional selectivity of GPCR ligand stereoisomers: new
pharmacological opportunities. Mol Pharmacol. 2009;75:13–18.
29. Jozwiak K, Khalid C, Tanga MJ, Berzetei-Gurske I, Jimenez L, Kozocas JA, et al.
Comparative molecular field analysis of the binding of the stereoisomers of
fenoterol and fenoterol derivatives to the β2 adrenergic receptor. J Med Chem.
2007;50:2903–15.
6. Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ. Ligand-directed sig-
nalling at beta-adrenoceptors. Br J Pharmacol. 2010;159:1022–38.
7. Violin JD, Lefkowitz RJ. β-Arrestin-biased ligands at seven-transmembrane
receptors. Trends Pharmacol Sci. 2007;28:416–22.
30. Jozwiak K, Woo AY, Tanga MJ, Toll L, Jimenez L, Kozocas JA, et al. Comparative
molecular field analysis of fenoterol derivatives: a platform towards highly
selective and effective β2-adrenergic receptor agonists. Bioorg Med Chem.
2010;18:728–36.
8. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, et al. A unique
mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling.
Proc Natl Acad Sci U S A. 2007;104:16657–62.
9. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, et al. A beta-blockers
alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation.
Proc Natl Acad Sci U S A. 2008;105:14555–60.
10. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart
failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A.
1999;96:7059–64.
11. Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha
A, et al. Myocardial-directed overexpression of the human β1-adrenergic receptor
in transgenic mice. J Mol Cell Cardiol. 2000;32:817–30.
31. Plazinska A, Pajak K, Rutkowska E, Jimenez L, Kozocas J, Koolpe G, et al. Com-
parative molecular field analysis of fenoterol derivatives interacting with an
agonist-stabilized form of the β2-adrenergic receptor. Bioorg Med Chem.
2014;22:234–46.
32. Woo AY, Wang TB, Zeng X, Zhu W, Abernethy DR, Wainer IW, et al. Stereo-
chemistry of an agonist determines coupling preference of β2-adrenoceptor to
different G proteins in cardiomyocytes. Mol Pharmacol. 2009;75:158–65.
33. Woo AY, Jozwiak K, Toll L, Tanga MJ, Kozocas JA, Jimenez L, et al. Tyrosine 308 is
necessary for ligand-directed Gs protein-biased signaling of β2-adrenoceptor.
J Biol Chem. 2014;289:19351–63.
34. Xing RJ, Pan L, Wen X, Ge DD, Zhang YY, Cheng MS. Synthesis and anti-asthma
activities of phenylethanolamine derivatives. Chin J Med Chem. 2009;19:94–98.
(Chinese).
35. Pan H, Li Q, Pan L, Liu X, Pan L, Zhang X, et al. Stereoselective activity of 2-(4-
amino-3-chloro-5-trifluomethyl-phenyl)-2-tert-butylamino-ethanol hydrochloride
to improve the pulmonary function in asthma. Biomed Rep. 2014;2:539–44.
36. Ge X, Woo AY, Xing G, Lu Y, Mo Y, Zhao Y, et al. Synthesis and biological
evaluation of β(2)-adrenoceptor agonists bearing the 2-amino-2-phenylethanol
scaffold. Eur J Med Chem. 2018;152:424–35.
12. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of
cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac
myocytes. Proc Natl Acad Sci U S A. 2001;98:1607–12.
13. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of β1-
adrenergic stimulation to apoptotic heart cell death through protein
kinase A-independent activation of Ca2+/calmodulin kinase II.
J Clin Invest.
2003;111:617–25.
14. Xiao RP, Ji X, Lakatta EG. Functional coupling of the β2-adrenoceptor to a pertussis
toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol. 1995;47:322–9.
15. Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, et al.
Radioimmunochemical quantification of Giα in right and left ventricles from
patients with ischaemic and dilated cardiomyopathy and predominant left
ventricular failure. J Mol Cell Cardiol. 1994;26:133–49.
37. Ge X, Mo Y, Xing G, Ji L, Zhao H, Chen J, et al. Synthesis, biological evaluation and
molecular modeling of 2-amino-2-phenylethanol derivatives as novel β(2)-adre-
noceptor agonists. Bioorg Chem. 2018;79:155–62.
38. Van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M. Quantification of
ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for
drug taxonomy. Mol Pharmacol. 2014;85:492–509.
Acta Pharmacologica Sinica (2019) 0:1 – 11