466
G. S. G. De Carvalho et al. / Tetrahedron Letters 50 (2009) 463–466
Elucidation of their respective structures was made by inspec-
References and notes
tion of their COSY NMR spectra that allowed the unambiguous
attribution of the signals due to the glycosyl protons of 12a and
12b. Thus, in the case of 12a, the signals ascribed to H-20 and
H-30 appeared at 4.36 and 5.36 ppm, respectively. Conversely, in
the case of 12b, the corresponding signals were found at 5.71
and 4.63 ppm in full support of the proposed structures.
From this experiment, it is clear that in basic medium 20,30-
cycloadenosine (adenosine 20,30-epoxide) undergoes a cyclization
and that this reaction manifests a preference for the formation of
the linkage between atoms N3 and C-20 over the linkage between
atoms N3 and C-30.
In conclusion, in this work, we have reconsidered the behavior
of adenosine 20,30-epoxide in basic medium and devised a synthetic
route to yield constrained analogues of 50-methylthioadenosine
(MTA) such as nucleoside 7 that derives from N3, C-20-cycloadeno-
sine featuring a spirothietane in position 40.
1. Loenen, W. A. M. Biochem. Soc. Trans. 2006, 34, 330–333; Fontecave, M.; Atta,
M.; Mulliez, E. Trends Biochem. Sci. 2004, 29, 243–249.
2. Borchardt, R. T. J. Med. Chem. 1980, 23, 347–357.
3. Duerre, J. R. J. Biol. Chem. 1962, 237, 3737–3741.
4. Narayan, P.; Rottman, F. M. In Advances in Enzymology; Meister, A., Ed.; John
Wiley: New York, 1994; pp 255–285; Chiang, P. K. Pharmacol. Ther. 1998, 77,
115–134.
5. Ferro, A. J.; Vanderback, A. A.; Mac Donald, M. R. Biochem. Biophys. Res. Commun.
1981, 100, 523–531.
6. Avila, M. A.; García-Trevijano, E. R.; Lu, S. C.; Corrales, F. J.; Mato, J. M. Int. J.
Biochem. Cell Biol. 2004, 36, 2125–2130.
7. AdoHcy hydrolase: Hu, Y.; Komoto, J.; Huang, Y.; Gomi, T.; Ogawa, H.; Takata,
Y.; Fujioka, M.; Takusawa, F. Biochemistry 1999, 38, 8323–8333. MTA
phosphorylase and MTA/AdoHcy nucleosidase: Lee, J. E.; Cornell, K. A.;
Riscoe, M. K.; Howell, P. L. Structure 2001, 9, 941–953. Lee, J. E.; Cornell, K.
A.; Riscoe, M. K.; Howell, P. L. J. Biol. Chem. 2003, 278, 8761–8770. Lee, J. E.;
Settembre, E. C.; Cornell, K. A.; Riscoe, M. K.; Sufrin, J. R.; Ealick, S. E.; Howell, P.
L. Biochemistry 2004, 43, 5159–5169. Lee, J. E.; Smith, G. D.; Horvatin, C.; Huang,
D. J. T.; Cornell, K. A.; Riscoe, M. K.; Howell, P. L. J. Mol. Biol. 2005, 352, 559–574.
Singh, V.; Evans, G. B.; Lenz, D. H.; Mason, J. M.; Clinch, K.; Mee, S.; Painter, G. F.;
Tyler, P. C.; Furneaux, R. H.; Lee, J. E.; Howell, P. L.; Schramm, V. L. J. Biol.
Chem. 2005, 280, 18265–18273. Singh, V.; Lee, J. E.; Nunez, S.; Howell, P. L.;
Schramm, V. L. Biochemistry 2005, 44, 11647–11659. Singh, V.; Schramm, V. L.
J. Am. Chem. Soc. 2007, 129, 2783–2795.
Acknowledgments
A.D. da S. thanks ICSN for financial support. We would also like
to acknowledge FAPEMIG and UFJF for a grant to G.S.G. de C.
8. Hanessian, S. Preparative Carbohydrate Chemistry; Marcel Dekker: New York,
1997; 18.
9. Youssefyeh, R. D.; Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem 1979, 44, 1301–
1309.
10. For the synthesis of a 4,4-spirothietane xyloside intermediate that served as a
precursor in the synthesis of the corresponding uridine analogue see: Roy, A.;
Achari, B.; Mandal, S. B. Tetrahedron Lett. 2006, 47, 3875–3879.
11. Vorbrüggen, H.; Ruh-Pohlenz, C. Org. React. 2000, 55, 1–630; Vorbrüggen, H.;
Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234–1255.
12. Reist, E. J.; Calkins, D. F.; Goodman, L. J. Org. Chem. 1967, 32, 2538–2541;
Robins, M. J.; Fouron, Y.; Mengel, R. J. Org. Chem. 1974, 39, 1564–1570.
Supplementary data
Supplementary data (Procedures for the preparation of deriva-
tives 2–8 and 10–12 and 1H NMR spectra for compounds 6a and
8) associated with this article can be found, in the online version,