4402
P. Bernhardt et al. / Tetrahedron Letters 51 (2010) 4400–4402
Stockigt, J. Chem. Biol. 2007, 14, 979–985; (c) Chen, S.; Galan, M. C.; Coltharp, C.;
O’Connor, S. E. Chem. Biol. 2006, 13, 1137–1141.
formed within the active site, they cannot be deprotonated. In-
stead, these intermediates would undergo the reverse reaction,
reforming iminium 13, and cyclization would be repeated until
the productive 14-2(R)3(S) isomer is formed. This facial deprotona-
tion model is consistent with the reversible nature of the Pictet–
Spengler reaction,11c but should be interpreted cautiously, since
it has not been experimentally validated.11d Nevertheless, this
model serves as a basis for understanding and engineering the ste-
reoselectivity of Pictet–Spenglerases.
8. Racemic authentic standards were synthesized from tryptamine hydrochloride
(0.5 M) and achiral aldehydes (0.5 M) in aqueous maleic acid buffer (10 mM,
pH 2.0, total volume 2 mL) at 60 °C. Either during the reaction or upon
standing, the tetrahydro-b-carboline product precipitated and could be filtered
and washed with water (3 ꢂ 2 mL) to afford analytically pure product. See
Supplementary data for NMR spectra and structures of products 15 through 21.
1-((Tetrahydro-2H-pyran-4-yl)methyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole
(product 15 from 1 and 4): 1H NMR (methanol-d4): d 7.48 (1H, dt, J = 0.9, 7.9),
7.36 (1H, dt, J = 0.9, 8.2), 7.16 (1H, td, J = 1.1, 8.2), 7.06 (1H, td, J = 0.9, 8.0), 4.86–
4.82 (1H, m), 4.03–3.96 (2H, m), 3.75 (1H, dt, J = 1.3, 4.1, 12.4), 3.55–3.44 (3H,
m), 3.12–3.07 (2H, m), 2.21–2.15 (1H, m), 1.95–1.83 (3H, m), 1.68 (1H, td,
J = 1.9, 13.1), 1.50–1.37 (2H, m); 13C NMR (methanol-d4): d 137.61, 129.58,
126.73, 122.80, 119.91, 118.34, 111.63, 106.54, 68.03, 67.87, 51.08, 42.39,
39.94, 33.93, 32.40, 31.09, 18.80; ESI-MS (C17H23N2O+) m/z calcd: 271.1810
[M+H]+, found: 271.1805 [M+H]+.
In an attempt to broaden the substrate scope of CrSTS, we mu-
tated His283 for Gly/Leu/Phe and deleted
D[282–285]. However,
these modifications did not confer the substrate scope of OpSTS
to CrSTS. His313 (His307 in RsSTS, His299 in OpSTS) is also within
hydrogen bonding distance to the glucose moiety of secologanin 2.
However, neither His313Leu nor the double mutant His283Leu/Hi-
s313Leu resulted in a broadened aldehyde substrate specificity.
The factors that control the substrate specificity of 2 are complex,
and mutations distant from the active site to impact substrate
specificity are currently being explored.
The Rubiaceae family of plants contains chiral tetrahydro-b-
carbolines different from those found in the Apocynaceae family.12
The enzymes that catalyze the formation of the precursor for these
natural products are unknown, but it is tempting to speculate that
they resemble OpSTS. Screening of Rubiaceae plants for new strict-
osidine synthase homologs and assay of the predicted substrates
will experimentally test this possibility, and potentially broaden
the base of biocatalysts available for use in this reaction. Although
the catalytic rates using OpSTS are relatively low with simple alde-
hyde substrates, high stereoselectivity is maintained. Protein engi-
neering may improve catalytic efficiency. This discovery allows the
asymmetric biocatalytic formation of a wide range of tetrahydro-b-
carbolines directly from tryptamine, and represents the first report
of a Pictet–Spenglerase with broad aldehyde specificity.
1-(Cyclohexylmethyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 16
from 1 and 5): 1H NMR (methanol-d4): d 7.47–7.44 (1H, m), 7.36 (1H, td,
J = 0.8, 8.2), 7.14 (1H, ddd, J = 1.1, 7.1, 8.2), 7.04 (1H, ddd, J = 1.0, 7.1, 8.0), 4.81–
4.74 (1H, m), 3.71 (1H, ddd, J = 3.5, 5.5, 12.5), 3.41 (1H, ddd, J = 5.5, 9.9, 12.6),
3.09 (1H, dddd, J = 1.9, 5.5, 9.8, 15.4), 3.05–2.99 (1H, m), 2.12 (1H, ddd, J = 3.7,
10.2, 14.3), 2.08–2.00 (1H, m), 1.87–1.60 (6H, m), 1.49–1.34 (2H, m), 1.33–1.22
(1H, m), 1.19–1.02 (2H, m); 13C NMR (methanol-d4): d 137.59, 129.95, 126.75,
122.69, 119.84, 118.31, 111.64, 106.39, 51.57, 42.46, 40.53, 34.56, 33.59, 32.41,
26.74, 26.54, 26.16, 18.81; ESI-MS (C18H25N2þ) m/z calcd: 269.2012 [M+H]+,
found: 269.2014 [M+H]+.
1-Isobutyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 17 from 1 and 6):
1H NMR (10:1, (methanol-d4/DMSO-d6) d 7.50 (1H, td, J = 1.0, 7.8), 7.39 (1H, td,
J = 0.9, 8.2), 7.17 (1H, ddd, J = 1.2, 7.1, 8.2), 7.08 (1H, ddd, J = 1.0, 7.1, 8.0), 4.82–
4.79 (1H, m), 3.74 (1H, ddd, J = 3.9, 5.3, 12.6), 3.47 (1H, ddd, J = 5.9, 9.3, 12.6),
3.16–3.02 (2H, m), 2.08 (1H, ddd, J = 3.9, 10.2, 14.2), 1.99 (1H, dqd, J = 3.9, 6.5,
19.5), 1.85 (1H, ddd, J = 3.9, 10.3, 14.2), 1.15 (3H, d, J = 6.4), 1.10 (3H, d, J = 6.5);
13C NMR (DMSO-d6): d 137.22, 131.64, 126.98, 122.74, 120.07, 119.09, 112.46,
106.81, 51.51, 41.94, 24.67, 24.53, 22.51, 19.16; ESI-MS (C15H21N2þ) m/z calcd:
229.1699 [M+H]+, found: 229.1697 [M+H]+.
1-Benzyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 18 from 1 and 7):
1H NMR (methanol-d4): d 7.55–7.37 (m, 7H), 7.21 (1H, ddd, J = 1.1, 7.1, 8.2,),
7.11 (1H, dd, J = 1.0, 7.1, 8.0), 5.06–5.01 (1H, m), 3.79–3.73 (1H, m), 3.62 (1H,
ddd, J = 3.6, 5.3, 12.5), 3.36 (1H, ddd, J = 5.7, 9.6, 12.6), 3.21–3.01 (3H, m); 13C
NMR (methanol-d4): d 136.68, 135.82, 130.10, 129.87, 127.71, 126.26, 122.3þ6,
119.54, 118.59, 111.90, 106.72, 54.20, 41.90, 37.76, 18.45; ESI-MS (C18H19N2
)
m/z calcd: 263.1543 [M+H]+, found: 263.1540 [M+H]+.
1-Pentyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 19 from 1 and 8):
1H NMR (methanol-d4): d 7.48 (1H, dt, J = 0.9, 7.9), 7.36 (1H, dt, J = 0.9, 8.2), 7.15
(1H, td, J = 1.1, 8.2), 7.06 (1H, td, J = 0.9, 8.0), 4.69 (1H, dd, J = 4.1, 8.9) 3.73 (1H,
ddd, J = 3.8, 5.5, 12.5), 3.44 (1H, ddd, J = 5.6, 9.6, 12.6), 3.11 (1H, dddd, J = 1.9,
5.6, 9.5, 15.1), 3.05 (1H, dddd, J = 1.3, 3.8, 5.3, 16.3), 2.31–2.23 (1H, m), 1.97–
1.89 (1H, m), 1.64–1.54 (2H, m), 1.53–1.37 (4H, m), 0.97 (3H, t, J = 7.1); 13C
NMR (methanol-d4): d 138.36, 130.32, 127.46, 123.48, 120.59, 119.10, 112.39,
107.18, 55.17, 43.19, 33.38, 32.79, 25.92, 23.48, 19.54, 14.37; ESI-MS
(C16 23N þ) m/z calcd: 243.1856 [M+H]+, found: 243.1851 [M+H]+.
Acknowledgments
This work was funded by the NIH (GM074820); A.R.U. acknowl-
edges NIH for a postdoctoral fellowship. We thank Omar Ahmad
for assistance with chiral HPLC.
H
2
1-Ethyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 20 from 1 and 9):
1H NMR (methanol-d4): d 7.47 (1H, td, J = 0.9, 7.9), 7.37 (1H, td, J = 0.9, 8.2), 7.15
(1H, ddd, J = 1.1, 7.1, 8.2), 7.06 (1H, ddd, J = 1.0, 7.1, 8.0), 4.63–4.57 (1H, m), 3.71
(1H, ddd, J = 3.7, 5.6, 12.5), 3.39 (1H, ddd, J = 5.5, 9.7, 12.6), 3.10 (1H, dddd,
J = 2.0, 5.6, 9.7, 15.3), 3.01 (1H, dddd, J = 1.4, 3.7, 5.3, 16.3), 2.33 (1H, dqd, J = 4.2,
7.6, 15.1), 2.05–1.93 (1H, m), 1.19 (3H, t, J = 7.5); 13C NMR (methanol-d4): d
138.30, 130.14, 127.42, 123.46, 120.57, 119.13, 112.38, 107.25, 56.19, 43.15,
26.33, 19.52, 9.93; ESI-MS (C13H17N2þ) m/z calcd: 201.1386 [M+H]+, found:
[M+H]+ 201.1385.
Supplementary data
Supplementary data (experimental methods, modeling data and
NMR spectra) associated with this article can be found, in the on-
1-Cyclohexyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (product 21 from 1 and
10): 1H NMR (methanol-d4): d 7.45 (1H, d, J = 7.9), 7.38 (1H, d, J = 8.2), 7.14 (1H,
ddd, J = 1.1, 7.2, 8.2), 7.04 (1H, ddd, J = 1.0, 7.2, 8.0), 4.60–4.57 (1H, m), 3.71 (1H,
ddd, J = 3.2, 5.5, 12.4), 3.38 (1H, ddd, J = 5.4, 10.1, 12.5), 3.10 (1H, dddd, J = 2.0,
5.6, 10.1, 15.8), 3.04–2.95 (1H, m), 2.35–2.22 (1H, m), 1.98–1.68 (4H, m), 1.57–
1.10 (6H, m); 13C NMR (methanol-d4): d 137.64, 128.27, 126.71, 122.76, 119.84,
References and notes
1. (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558–10559; (b)
Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086–1087; (c)
Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007,
129, 13404–13405; (d) Wanner, M. J.; van der Haas, R. N.; de Cuba, K. R.; van
Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485–7487; (e)
Sewgobind, N. V.; Wanner, M. J.; Ingemann, S.; de Gelder, R.; van Maarseveen, J.
H.; Hiemstra, H. J. Org. Chem. 2008, 73, 6405–6408; (f) Klausen, R. S.; Jacobsen,
E. N. Org. Lett. 2009, 11, 887–890; (g) Bou-Hamdan, F. R.; Leighton, J. L. Angew.
Chem., Int. Ed. 2009, 48, 2403–2406.
118.31, 111.65, 107.40, 59.19, 43.15, 40.32, 30.12, 27.07, 26.82, 26.43, 26.41,
þ
18.70; ESI-MS (C17H23N2
)
m/z calcd: 255.1856 [M+H]+, found: 255.1858
[M+H]+.
9. Enantiomeric products derived from 4, 5, 7, and 8 were successfully separated
(Supplementary data), but enantiomeric products derived from 6 could not be
separated despite testing many chromatography conditions.
2. O’Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532–547.
10. Pfitzner, U.; Zenk, M. H. Methods Enzymol. 1987, 136, 342–350.
11. (a) Maresh, J. J.; Giddings, L. A.; Friedrich, A.; Loris, E. A.; Panjikar, S.; Trout, B.
L.; Stöckigt, J.; Peters, B.; O’Connor, S. E. J. Am. Chem. Soc. 2008, 130, 710–723;
(b) Computational studies (11a) suggest the spiroindolenine intermediate is
not a productive intermediate; attack from indole C2 to directly form 14 is the
productive mechanism.; (c) Kinetic isotope effects suggest the Pictet–Spengler
reaction is reversible prior to the final deprotonation step (11a).; (d) Point
mutation of Phe226 (Figure 1B) to numerous ionizable residues did not impact
the stereoselectivity of the reaction. More extensive mutagenesis of STS is
underway to experimentally validate this hypothesis.
3. (a) Faber, K. Biotransformations in Organic Synthesis, 5th ed.; Springer, 2008; (b)
Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis, 2nd ed.;
Wiley-VCH, 2006.
4. (a) Kutchan, T. M.; Hampp, N.; Lottspeich, F.; Beyreuther, K.; Zenk, M. H. FEBS
Lett. 1988, 237, 40–44; (b) McKnight, T. D.; Roessner, C. A.; Devagupta, R.; Scott,
A. I.; Nessler, C. L. Nucleic Acids Res. 1990, 18, 4939; (c) Yamazaki, Y.; Sudo, H.;
Yamazaki, M.; Aimi, N.; Saito, K. Plant Cell Physiol. 2003, 44, 395–403.
5. (a) McCoy, E. A.; Galan, M. C.; O’Connor, S. E. Bioorg. Med. Chem. Lett. 2006, 16,
2475–2478; (b) Treimer, J. F.; Zenk, M. H. Eur. J. Biochem. 1979, 101, 225–233.
6. Ma, X.; Panjikar, S.; Koepke, J.; Loris, E.; Stöckigt, J. Plant Cell 2006, 23, 532–547.
7. (a) Bernhardt, P.; McCoy, E. A.; O’Connor, S. E. Chem. Biol. 2007, 14, 888–897; (b)
Loris, E. A.; Panjikar, S.; Ruppert, M.; Barleben, L.; Unger, M.; Schubel, H.;
12. Lopes, S.; von Poser, G. L.; Kerber, V. A.; Farias, F. M.; Konrath, E. L.; Moreno, P.;
Sobral, M. E.; Zuanazzi, J. A. S.; Henriques, A. T. Biochem. Syst. Ecol. 2004, 32,
1187–1195.