M. K. Ghorai et al. / Tetrahedron Letters 50 (2009) 476–479
479
3. (a) Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. 1991, 113, 9694–9696; (b)
Kawabata, T.; Wirth, T.; Yahiro, K.; Suzuki, H.; Fuji, K. J. Am. Chem. Soc. 1994,
116, 10809–10810; (c) Fuji, K.; Kawabata, T. Chem. Eur. J. 1998, 4, 373–376; (d)
Kawabata, T.; Chen, J.; Suzuki, H.; Nagae, Y.; Kinoshita, T.; Chancharunee, S.;
Fuji, K. Org. Lett. 2000, 2, 3883–3885; (e) Kawabata, T.; Suzuki, H.; Nagae, Y.;
Fuji, K. Angew. Chem., Int. Ed. 2000, 39, 2155–2157; (f) Kawabata, T.; Kawakami,
S.; Fuji, K. Tetrahedron Lett. 2002, 43, 1465–1467; (g) Fuji, K.; Kawabata, T. Top.
Stereochem. 2003, 23, 175–205; (h) Eames, J.; Suggate, M. J. Angew. Chem., Int.
Ed. 2005, 44, 186–189; (i) Carlier, P. R.; Zhao, H.; DeGuzman, J.; Lam, P. C.-H. J.
Am. Chem. Soc. 2003, 125, 11482–11483; (j) MacQuarrie-Hunter, S.; Carlier, P. R.
Org. Lett. 2005, 7, 5305–5308; (k) Carlier, P. R.; Lam, P. C.-H.; DeGuzman, J.;
Zhao, H. Tetrahedron: Asymmetry 2005, 16, 2998–3002; (l) Branca, M.; Gori, D.;
Guillot, R.; Alezra, V.; Kouklovsky, C. J. Am. Chem. Soc. 2008, 130, 5864–5865.
4. (a) Kawabata, T.; Kawakami, S.; Majumdar, S. J. Am. Chem. Soc. 2003, 125,
13012–13013; (b) Kawabata, T.; Majumdar, S.; Tsubaki, K.; Monguchi, D. Org.
Biomol. Chem. 2005, 3, 1609–1611; (c) Kawabata, T.; Matsuda, S.; Kawakami, S.;
Monguchi, D.; Moriyama, K. J. Am. Chem. Soc. 2006, 128, 15394–15395; (d)
Monguchi, D.; Majumdar, S.; Kawabata, T. Heterocycles 2006, 68, 2571–2578;
(e) Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K. J. Am. Chem. Soc.
2008, 130, 4153–4157; (f) Moriyama, K.; Sakai, H.; Kawabata, T. Org. Lett. 2008,
10, 3883–3886.
10. (a) Combined yields of two diastereomers of 3a–f obtained as a mixture from
the corresponding crude reaction mixture after passing through a small silica
gel column.
(b) General method for Boc deprotection of imino-aldol products 2a–f: To a
stirring solution of substrates 2a–f (0.10 mmol) in dry dichloromethane (1 mL)
was added trifluoroacetic acid (0.5 mL) at 0 °C. The reaction mixture was
stirred at room temperature for 2 h. It was neutralized with aq saturated
NaHCO3 solution and the aqueous layer was extracted with CH2Cl2 (3 ꢂ 5 mL).
The combined organic extract was washed with brine and dried over
anhydrous Na2SO4 and the solvent was evaporated under reduced pressure.
The residue was purified by flash column chromatography on silica gel to
provide 3a–f.
Characterization data for 3a: The general procedure described above was
followed to afford 3a as a white solid in 88% overall yield (combined yield of
both the diastereomers). It was obtained as a mixture of diastereomers in
83:17 ratio (based on 1H NMR analysis of crude reaction mixture), where the
diastereomers were separated through flash column chromatography (eluent:
EtOAc/petroleum ether 10/90).
For the major diastereomer of 3a: IR mmax (KBr, cmꢀ1): 3344, 2925, 2854, 2354,
1732, 1600, 1454, 1263, 1161, 1091, 1019; 1H NMR (400 MHz, CDCl3): d (ppm)
1.03 (t, J = 7.2 Hz, 3H), 2.20 (s, 3H), 3.04 (d, J = 14.7 Hz, 1H), 3.33 (d, J = 14.8 Hz,
1H), 3.51 (d, J = 12.4 Hz, 1H), 3.66 (d, J = 12.4 Hz, 1H), 3.95 (q, J = 7.1 Hz, 2H),
4.83 (d, J = 6.6 Hz, 1H), 6.2 (br s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 6.97–7.06 (m, 4H),
7.08–7.23 (m, 11H), 7.31 (d, J = 8.1 Hz, 2H); 13C NMR (100 MHz, CDCl3): d
(ppm) 13.7, 21.2, 38.7, 46.9, 61.6, 61.7, 68.8, 126.8, 127.0, 127.6, 127.7, 128.26,
128.28, 128.3, 128.4, 128.9, 129.8, 130.4, 135.9, 136.3, 137.9, 139.5, 142.5,
173.1; HRMS (ESI) m/z Calcd for C32H34N2O4S (M++H): 543.2329, found:
543.2311; Rf 0.45 (ethyl acetate/petroleum ether: 20/80); mp: 158–160 °C;
5. (a) Zhao, H.; Hsu, D. C.; Carlier, P. R. Synthesis 2005, 01–16 and references cited
therein; (b) Wanyoike, G. N.; Onomura, O.; Maki, T.; Matsumura, Y. Org. Lett.
2002, 4, 1875–1877; (c) Lapierre, A. J. B.; Geib, S. J.; Curran, D. P. J. Am. Chem.
Soc. 2007, 129, 494–495.
6. Radicals as reactive intermediates in memory of chirality processes: (a) Sauer,
S.; Schumacher, A.; Barbosa, F.; Giese, B. Tetrahedron Lett. 1998, 39, 3685–3688;
(b) Giese, B.; Wettstein, P.; Stähelin, C.; Barbosa, F.; Neuburger, M.; Zehnder,
M.; Wessig, P. Angew. Chem., Int. Ed. 1999, 38, 2586–2587; (c) Curran, D. P.; Liu,
W.; Chen, C. H-T. J. Am. Chem. Soc. 1999, 121, 11012–11013; (d) Buckmelter, A.
J.; Kim, A. I.; Richnovsky, S. D. J. Am. Chem. Soc. 2000, 122, 9386–9390; (e)
Griesbeck, A. G.; Kramer, W.; Lex, J. Angew. Chem., Int. Ed. 2001, 40, 577–579; (f)
Griesbeck, A. G.; Kramer, W.; Bartoschek, A.; Schmickler, H. Org. Lett. 2001, 3,
537–539; (g) Griesbeck, A. G.; Kramer, W.; Lex, J. Synthesis 2001, 1159–1166;
(h) Sakamoto, M.; Kawanishi, H.; Mino, T.; Fujita, T. Chem. Commun. 2008,
2132–2133.
7. (a) Brewster, A. G.; Jayatissa, J.; Mitchell, M. B.; Schofield, A.; Stoodley, R. J.
Tetrahedron Lett. 2002, 43, 3919–3922; (b) Kolaczkowski, L.; Barnes, D. M. Org.
Lett. 2007, 9, 3029–3032.
8. (a) Gerona-Navarro, G.; Bonache, M. A.; Herranz, R.; Gracía-López, M. T.;
González-Muñiz, R. J. Org. Chem. 2001, 66, 3538–3547; (b) Bonache, M. A.;
Gerona-Navarro, G.; Martín-Martínez, M.; Gracía-López, M. T.; López, P.;
Cativiela, C.; González-Muñiz, R. Synlett 2003, 1007–1011; (c) Bonache, M. A.;
Cativiela, C.; Gracía-López, M. T.; González-Muñiz, R. Tetrahedron Lett. 2006, 47,
5883–5887.
9. (a) General experimental procedure for the imino-aldol reaction of N-benzyl-N-
tert-butoxycarbonylamino acid ester 1a with various imines: To a solution of
diisopropylamine (0.12 mL, 0.848 mmol) in 2 mL dry THF was added n-BuLi
(1.6 M in hexane) (0.53 mL, 0.848 mmol) at 0 °C and stirred for 20 min. It was
cooled to ꢀ78 °C and a solution of N-benzyl-N-tert-butoxycarbonyl amino acid
ester 1a (0.848 mmol) in 1.0 mL dry THF was added to it and allowed to stir for
1 h. N-Sulfonylimine (0.385 mmol) dissolved in 1.0 mL dry THF was slowly
added into the reaction mixture and stirring was continued at the same
temperature for 10 h. After completion of the reaction (monitored with TLC), it
was quenched with a saturated aqueous ammonium chloride solution and
extracted with 5 mL of ethyl acetate in two portions. The combined organic
extract was dried over anhydrous Na2SO4 and the solvent was evaporated
under reduced pressure. The residue was purified on a silica gel column by
flash column chromatography using ethyl acetate in petroleum ether as the
eluent to afford the pure products 2a-f.
Optical rotation: ½a D25
ꢁ
+10.25 (c 0.335, CHCl3) for a 92% ee sample; Optical
purity was determined by chiral HPLC analysis (Chiralpak AD-H column) using
95/5 hexane/isopropanol, flow rate = 1.0 mL/min, TR 1: 72.6 min (major), TR 2:
97.3 min (minor).
For the minor diastereomer of 3a: IR mmax (KBr, cmꢀ1): 3347, 3296, 2959, 2924,
2853, 1730, 1661, 1600, 1454, 1264, 1161, 1090, 1019; 1H NMR (500 MHz,
CDCl3): d (ppm) 1.08 (t, J = 7.1 Hz, 3H), 2.25 (s, 3H), 3.02 (d, J = 15.2 Hz, 1H),
3.34 (d, J = 15.2 Hz, 1H), 3.74 (d, J = 11.8 Hz, 1H), 3.81 (d, J = 11.8 Hz, 1H), 3.98
(q, J = 7.1 Hz, 2H), 4.22 (d, J = 6.6 Hz, 1H), 4.73 (d, J = 7.7 Hz, 1H), 6.10 (d,
J = 7.7 Hz, 1H), 6.85–6.88 (m, 2H), 6.98–7.09 (m, 4H), 7.22–7.33 (m, 11H), 7.70
(d, J = 8.3 Hz, 2H); HRMS (ESI) m/z Calcd for C32H34N2O4S (M++H): 543.2329,
found: 543.2315; Rf 0.44 (ethyl acetate/petroleum ether: 20/80); optical
rotation ½a 2D5
ꢀ10.77 (c 0.65, CHCl3) for a 80% ee sample; optical purity was
ꢁ
determined by chiral HPLC analysis (Chiralpak AD-H column) using 95/5
hexane/isopropanol, flow rate = 1.0 mL/min, TR 1: 35.1 min (major), TR 2:
43.2 min (minor).
11. The crystals were obtained as a racemate hence the absolute configuration
could not be assigned. After crystallization of 3a, the mother liquor contained
the pure enantiomer which could not be crystallized. CCDC No. of 3a: 693721.
12. Synthesis of [(2-benzyl, N-benzylaziridin-2-yl)-phenylmethyl]-4-methylbenzene
sulfonamide (7a): To a solution of alcohol 6a (30 mg, 0.059 mmol) (single
diastereomer) in dry CH2Cl2 (0.5 mL) were added mesyl chloride (2 mmol) and
triethylamine (2.5 mmol). The reaction mixture was stirred at room
temperature for 5 h. It was poured into water and the aqueous layer was
extracted with CH2Cl2 (2 ꢂ 10 mL). The combined organic extract was washed
with brine and dried over anhydrous Na2SO4 and the solvent was evaporated
under reduced pressure. The residue was purified by flash column
chromatography over silica gel (eluent: EtOAc/petroleum ether 10/90) to
provide 7a as a white solid in 65% yield. IR
2923, 2854, 1600, 1495, 1454, 1426, 1324, 1286, 1163, 1089, 1062, 1044, 1030;
1H NMR (400 MHz, CDCl3):
(ppm) 2.21 (s, 3H), 2.27 (s, 2H), 2.47 (d,
m
max (KBr, cmꢀ1): 3286, 3060, 3029,
d
J = 14.9 Hz, 1H), 2.67 (d, J = 14.9 Hz, 1H), 3.46 (d, J = 13.4 Hz, 1H), 3.85 (d, J =
13.4 Hz, 1H), 4.23 (d, J = 7.6 Hz, 1H), 5.52 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 7.8 Hz,
2H), 6.87–7.04 (m, 6H), 7.18–7.34 (m, 11H); 13C NMR (100 MHz, CDCl3): d
(ppm) 21.3, 29.7, 34.0, 35.7, 44.1, 56.5, 126.7, 126.8, 127.3, 127.4, 127.9, 128.1,
128.4, 128.5, 128.6, 129.0, 129.2, 137.2, 139.2, 139.3, 142.3, 142.4; HRMS (ESI)
m/z: Calcd for C30H31N2O2S (M++H): 483.2106, found: 483.2106; Rf 0.33 (ethyl
Characterization data for compound 2a: white solid; yield 84%; eluent: EtOAc/
petroleum ether 10/90; Rf 0.45 (ethyl acetate/petroleum ether: 20/80); ½a D25
ꢁ
+10.76 (c 0.415, CHCl3); IR mmax (KBr, cmꢀ1): 3334, 2978, 2927, 1738, 1696,
1389, 1160, 1090; 13C NMR for the mixture of stereoisomers (100 MHz, CDCl3):
d 13.4, 21.0, 21.3, 27.9, 29.6, 37.1, 40.6, 49.5, 61.2, 61.4, 61.9, 71.0, 80.9, 81.1,
81.5, 125.5, 125.8, 126.2, 127.0, 127.2, 127.80, 127.86, 128.0, 128.1, 128.5,
128.7, 128.8, 129.4, 129.9, 130.8, 131.2, 134.6, 135.7, 136.8, 138.1, 139.6, 139.9,
141.9, 142.3, 156.1, 157.1, 169.5; HRMS (ESI) m/z Calcd for C37H43N2O6S
(M++H): 643.2841, found: 643.2834.
acetate/petroleum ether: 15/85); mp: 140–142 °C; optical rotation: ½ ꢁ
a 2D5
+31.80 (c 0.22, CHCl3) for a 92% ee sample; optical purity was determined by
chiral HPLC analysis (Chiralpak AD-H column); 95/5 hexane/isopropanol, flow
rate = 1.0 mL/min. TR 1: 28.3 min (major), TR 2: 35.3 min (minor). (eluent:
EtOAc/petroleum ether 10/90).
(b) The reaction is highly dependent on temperature, solvent, bases, and most
importantly on time, and the corresponding de/ee of the product may change
with slight changes in any of these conditions.