imine-enamine isomerization.2e,5 In recent years, the application
of primary amino acid derivatives in organocatalysis has
received rapidly growing attention because of the increasing
recognition of their relationship to biogenesis,6 their rediscovered
effectiveness in aldol catalysis,7 and their unprecedented syn
stereoselectivity in some direct aldol reactions.3 In the latter
cases, primary amino acids conjugated with additional chiral
building blocks were proven to be promising catalysts.3d Simple
primary amino acid derivatives, such as chiral vicinal diamines,
remain much less explored, however, though they have been
applied as chiral ligands in asymmetric catalysis8 or used as
iminium-type organocatalysts previously.9 In only one case was
the primary-tertiary diamine-Brønsted acid conjugate exam-
ined for asymmetric catalysis of direct aldol reactions. Unfor-
tunately, poor yield and stereoselectivity were obtained.10b Here,
we report a class of primary diamine catalysts derived from
Chiral Primary-Tertiary Diamine Catalysts
Derived From Natural Amino Acids for syn-Aldol
Reactions of Hydroxy Ketones
Jiuyuan Li,† Sanzhong Luo,*,† and Jin-Pei Cheng*,†,‡
Beijing National Laboratory for Molecule Sciences
(BNLMS), Center for Chemical Biology, Institute of
Chemistry, Chinese Academy of Sciences,
Beijing, 100190 China, and Department of Chemistry and
State Key Laboratory of Elemental-Organic Chemistry,
Nankai UniVersity, Tianjin, 300071 China
ReceiVed NoVember 18, 2008
(2) For reviews, see: (a) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem.
Res. 2004, 37, 580–591. (b) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B.
Chem. ReV. 2007, 107, 5471–5569. For selected examples of anti-aldol reactions,
see: (c) Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C.
Angew. Chem., Int. Ed. 2004, 43, 2152. (d) Casas, J.; Engqvist, M.; Ibrahem, I.;
Kaynak, B.; Co´rdova, A. Angew. Chem., Int. Ed. 2005, 44, 1343. (e) Northrup,
A. B.; MacMillan, D. W. C. Science 2004, 305, 1752. (f) Co´rdova, A.; Zou,
W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.-W. Chem. Commun. 2005,
3586. (g) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed.
2005, 44, 3055. (h) Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44,
1210. (i) Suri, J. T.; Ramachary, D. B.; Barbas, C. F., III. Org. Lett. 2005, 7,
1383. (j) Ibrahem, I.; Co´rdova, A. Tetrahedron Lett. 2005, 46, 3363. (k) Torii,
H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed.
2004, 43, 1983. (l) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi,
A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (m) Tang,
Z.; Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5755. (n) Berkessel, A.; Koch, B.; Lex, J.
AdV. Synth. Catal. 2004, 346, 1141. (o) Cobb, A. J. A.; Shaw, D. M.; Longbottom,
D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84. (p) Mase, N.;
Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am.
Chem. Soc. 2006, 128, 734. (q) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh,
H.; Urushima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958. (r) Samanta,
S.; Liu, J.; Dodda, R.; Zhao, C.-G. Org. Lett. 2005, 7, 5321. (s) Cheng, C.; Sun,
J.; Wang, C.; Zhang, Y.; Wei, S.; Jiang, F.; Wu, Y. Chem. Commun. 2006,
215–217. (t) Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Chen, L.; Wan, J.; Xiao, W.-J.
Org. Lett. 2005, 7, 4543.
(3) For examples of syn-aldol reactions of ketones, see: (a) Ramasastry,
S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2007, 129,
288–289. (b) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc.
2007, 129, 3074–3075. (c) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.;
Tanaka, F.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2007, 46, 5572–5575. (d)
Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247–4249. (e) Utsumi,
N.; Imai, M.; Tanaka, F.; Ramasastry, S. S. V.; Barbas, C. F., III. Org. Lett.
2007, 9, 3445–3448. (f) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.;
Barbas, C. F., III. Org. Lett. 2008, 10, 1621–1624. (g) Luo, S.; Xu, H.; Zhang,
L.; Li, J.; Cheng, J.-P. Org. Lett. 2008, 10, 653–656. (h) Luo, S.; Xu, H.; Chen,
L.; Cheng, J.-P. Org. Lett. 2008, 10, 1775–1778. (i) Zhu, M.-K.; Xu, X.-Y.;
Gong, L.-Z. AdV. Synth. Catal. 2008, 350, 1390–1396.
(4) For reviews, see: (a) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B.
Chem. ReV 2007, 107, 5471–5569. For selected examples, see ref 10 and: (b)
Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong,
L.-Z. J. Am. Chem. Soc. 2005, 127, 9285–9289. (c) Luo, S.; Mi, X.; Zhang, L.;
Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093–3097. (d)
Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Sumiya, T.; Urushima, T.; Shoji, M.;
Hashizume, D.; Koshino, H. AdV. Synth. Catal. 2004, 346, 1435–1439. (e)
Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005,
44, 4212–4215. (f) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558.
(g) Hayashi, Y.; Itoh, T.; Aratake, S.; Ishikawa, H. Angew. Chem., Int. Ed. 2008,
47, 2082–2084. (h) Mitsumori, S.; Zhang, H.; Cheogn, P. H.-Y.; Houk, K. N.;
Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040–1041.
(5) Bahmanyar, B.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 11273–11283.
(6) (a) Klussmann, M.; Iwamura, H.; Mathew, S. P.; Wells, D. H.; Pandya,
U.; Amstrong, A.; Blackmond, D. G. Nature 2006, 441, 621–623. (b) Klussmann,
M.; Izumi, T.; White, A. J. P.; Amstrong, A.; Klackmond, D. G. J. Am. Chem.
Soc. 2007, 129, 7657–7660.
A series of primary-tertiary diamine catalysts were designed
and synthesized from primary natural amino acids. Applica-
tion of these new chiral catalysts in direct aldol reactions of
R-hydroxyketones showed very good catalytic activity (up
to 97% yield) and high syn selectivity (up to syn/ anti )
30:1, 99% ee).
The aldol reaction has long been recognized as a useful
strategy to construct various C-C bonds in organic synthesis.1
The past decade has witnessed the extraordinary success of chiral
amines, particularly chiral pyrrolidines, as efficient enamine-
based asymmetric direct aldol catalysts.2 In this context, the
identification of chiral primary amine catalysts represents one
of the recent prominent progresses. Barbas, Gong, and this group
have independently reported a number of chiral primary amine
catalysts that enabled syn-aldol reactions of ketones.3 Despite
these notable achievements, development of simple and new
catalysts for efficient syn-aldol reactions is still highly desired.2b
Natural amino acids provide a versatile chiral pool for
evolution of organocatalysts as evidenced by the rapid ac-
cumulation of various L-proline-based chiral pyrrolidine cata-
lysts.4 However, primary amino acids (the other 20 amino acids)
seem to be almost overlooked for this kind of catalysts, due
partially to the initial findings of their ineffectiveness in catalyst
screening processes and also to the assumed unfavorable
† Chinese Academy of Sciences.
‡ Nankai University.
(1) For reviews on direct aldol reactions, see: (a) Modern Aldol Additions;
Mahrwald, R., Eds.; Wiley-VCH: Weinheim, 2004. (b) Palomo, C.; Oiarbide,
M.; Garcia, J. M. Chem.sEur. J. 2002, 8, 36–44. (c) Machajewski, T. D.; Wong,
C.-H. Angew. Chem., Int. Ed. 2000, 39, 1352–1374.
10.1021/jo802557p CCC: $40.75
Published on Web 01/16/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1747–1750 1747