Organometallics
Article
Hz, 16H; C6H4Me), 6.83−6.87 (m, 4H; Ar), 6.99−7.01 (m, 8H; Ar),
7.05−7.10 (m, 12H; Ar). 13C NMR (100 MHz, [D8]THF): δ 20.8,
111.7, 116.6, 125.5, 128.4, 128.8, 129.2, 129.3, 130.41, 130.44, 135.2,
147.5, 160.3, 172.7. Anal. Calcd for C96H88N10Lu2: C, 66.58; H, 5.12;
N, 8.09. Found: C, 66.35; H, 4.98; N, 7.93. Single crystals of 10
suitable for X-ray analysis could be grown from toluene/hexane at
room temperature.
Typical Procedures for the Catalytic Reaction between
Amines and Carbodiimides: NMR Tube Reaction. In the
glovebox, a J. Young valve NMR tube was charged with 3 (4.4 mg,
0.005 mmol), C6D6 (0.5 mL), aniline (48 mg, 0.51 mmol), and N,N′-
diisopropylcarbodiimide (63 mg, 0.50 mmol). The tube was taken out
of the glovebox and then heated to 80 °C in an oil bath for 1 h.
Formation of 8a−g and 9a,b was monitored by 1H NMR
spectroscopy. The NMR data of 8a−g and 9a,b were consistent
with those reported.8b
X-ray Crystallographic Studies. Single crystals of 2−7 and 10
suitable for X-ray analysis were grown as shown in the Experimental
Section. The crystals of 7 were manipulated under a nitrogen
atmosphere and were sealed in a thin-walled glass capillary. Data
collection for 2, 3, and 6 was performed at −100 °C on a Rigaku CCD
SATURN 724 diffractometer, using graphite-monochromated Mo Kα
radiation (λ = 0.71073 Å). 7 was performed at 20 °C on a Rigaku
RAXIS RAPID IP diffractometer, using graphite-monochromated Mo
Kα radiation (λ = 0.71073 Å). Data collection for 4 and 10 was
performed at −173 °C and for 5 was performed at 20 °C on an Agilent
SuperNova Dual Atlas CCD diffractometer (CCD-2) using graphite-
monochromated Mo Kα radiation (α = 0.71073 Å).11 The
determination of crystal class and unit cell parameters was carried
out by the CrystalClear (Rigaku Inc., 2007) for 2, 3, and 6 or Rapid-
AUTO (Rigaku 2000) program package for 7. The raw frame data
were processed using Crystal Structure (Rigaku/MSC 2000) for 7 or
CrystalClear (Rigaku Inc., 2007) for 2, 3, and 6 to yield the reflection
data file. The structures of 2, 3, 6, and 7 were solved by use of the
SHELXTL program.12 Refinement was performed on F2 anisotropi-
cally for all the non-hydrogen atoms by the full-matrix least-squares
method. Using Olex2, the structure of 4 was solved with XS using
direct methods and refined with the ShelXL refinement package using
least-squares minimization.13 The structure of 5 was solved with
Superflip and refined with the XL refinement package using least-
squares minimization. The structure of 10 was solved with the
Superflip structure solution program using Charge Flipping and
refined with the XL refinement package using least-squares
minimization. The hydrogen atoms were placed at calculated positions
and were included in the structure calculation without further
refinement of the parameters. Crystal data, data collection, and
processing parameters for the rare-earth complexes 2−7 and 10 are
summarized in the Supporting Information. Crystallographic data
(excluding structure factors) have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication nos.
CCDC-972190 (2), CCDC-972191 (3·0.5(hexane)), CCDC-972192
(4), CCDC-972194 (5), CCDC-972195 (6), CCDC-972196 (7·
0.5(hexane)), and CCDC-972197 (10). Copies of these data can be
obtained free of charge from the Cambridge Crystallographic Data
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the “973” program from National
Basic Research Program of China (2012CB821600,
2014CB845604) and the Natural Science Foundation of
China (NSFC).
REFERENCES
■
(1) Selected reviews: (a) Zhang, J.; Zhou, X. Dalton Trans. 2011, 40,
9637. (b) Zhang, J.; Zhou, X. C. R. Chim. 2010, 13, 633. (c) Nishiura,
M.; Hou, Z. Nat. Chem. 2010, 2, 257. (d) Zimmermann, M.;
Anwander, R. Chem. Rev. 2010, 110, 6194. (e) Zi, G. Dalton Trans.
2009, 9101. (f) Amin, S. B.; Marks, T. J. Angew. Chem., Int. Ed. 2008,
47, 2006. (g) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.;
̈
Tada, M. Chem. Rev. 2008, 108, 3795. (h) Yu, N.; Hou, Z.; Xi, Z. Prog.
Chem. 2008, 20, 1515. (i) Hou, Z.; Nishiura, M.; Shima, T. Eur. J.
Inorg. Chem. 2007, 2535. (j) Gottfriedsen, J.; Edelmann, F. T. Coord.
Chem. Rev. 2007, 251, 142. (k) Evans, W. J. Inorg. Chem. 2007, 46,
3435. (l) Liu, R.; Zhou, X. J. Organomet. Chem. 2007, 692, 4424.
(m) Hou, Z.; Luo, Y.; Li, X. J. Orgnomet. Chem. 2006, 691, 3114.
(n) Zeimentz, P. M.; Arndt, S.; Elvidge, B. R.; Okuda, J. Chem. Rev.
2006, 106, 2404. (o) Arndt, S.; Okuda, J. Adv. Synth. Catal. 2005, 347,
339. (p) Nishiura, M.; Hou, Z. J. Mol. Catal. A 2004, 213, 101.
(q) Hou, Z. Bull. Chem. Soc. Jpn. 2003, 76, 2253. (r) Okuda, J. Dalton
Trans. 2003, 2367. (s) Arndt, S.; Okuda, J. Chem. Rev. 2002, 102,
1953. (t) Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002, 102,
2161. (u) Piers, W. E.; Emslie, D. J. H. Coord. Chem. Rev. 2002, 233−
234, 131. (v) Evans, W. J.; Davis, B. L. Chem. Rev. 2002, 102, 2119.
(w) Evans, W. J. Coord. Chem. Rev. 2000, 206−207, 263.
(x) Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L. Chem. Rev.
1995, 95, 865.
(2) Selected reviews: (a) Nishiura, M.; Hou, Z. Bull. Chem. Soc. Jpn.
2010, 83, 595. (b) Edelmann, F. T. Adv. Organomet. Chem. 2008, 57,
183. (c) Coles, M. P. Dalton Trans. 2006, 985. (d) Bailey, P. J.; Pace, S.
Coord. Chem. Rev. 2001, 214, 91. (e) Barker, J.; Kilner, M. Coord.
Chem. Rev. 1994, 133, 219.
(3) Zhang, W.-X.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127,
16788.
(4) (a) Xu, L.; Wang, Y.-C.; Zhang, W.-X.; Xi, Z. Dalton Trans. 2013,
42, 16466. (b) Zhang, J.; Ma, L.; Han, Y.; Han, F.; Zhang, A.; Cai, R.;
Chen, Z.; Zhou, X. Dalton Trans. 2009, 3298. (c) Wang, S.; Tang, X.;
Vega, A.; Saillard, J.-Y.; Zhou, S.; Yang, G.; Yao, W.; Wei, Y.
Organometallics 2007, 26, 1512. (d) Evans, W. J.; Forrestal, K. J.; Ziller,
J. W. Angew. Chem., Int. Ed. 1997, 36, 774. (e) Giardello, M. A.;
Conticrllo, V. P.; Brard, L.; Gagne, M. R.; Marks, T. J. J. Am. Chem.
Soc. 1994, 116, 10241.
(5) Selected reviews: (a) Suzuki, T.; Zhang, W.-X.; Nishiura, M.;
Hou, Z. J. Synth. Org. Chem. Jpn. 2009, 67, 451. (b) Shen, H.; Xie, Z. J.
Organomet. Chem. 2009, 694, 1652. (c) Zhang, W.-X.; Hou, Z. Org.
Biomol. Chem. 2008, 16, 1720.
ASSOCIATED CONTENT
* Supporting Information
Text, figures, tables, and CIF files giving additional NMR data,
1H NMR and 13C NMR spectra of all new compounds,
crystallographic tables, and X-ray crystallographic data for 2−7
and 10. This material is available free of charge via the Internet
(6) Selected examples of guanylation reactions catalyzed by transition
metals: (a) Shen, H.; Wang, Y.; Xie, Z. Org. Lett. 2011, 13, 4562.
(b) Li, D.; Guang, J.; Zhang, W.-X.; Wang, Y.; Xi, Z. Org. Biomol.
■
S
́
Chem. 2010, 8, 1816. (c) Romero-Fernandez, J.; Carrillo-Hermosilla,
́
́
F.; Antinolo, A.; Alonso-Moreno, C.; Rodrıguez, A. M.; Lopez-Solera,
̃
I.; Otero, A. Dalton Trans. 2010, 39, 6419. (d) Shen, H.; Chan, H.-S.;
́
Xie, Z. Organometallics 2006, 25, 5515. (e) Montilla, F.; del Rıo, D.;
Pastor, A.; Galindo, A. Organometallics 2006, 25, 4996. (f) Ong, T.-G.;
Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 8100.
(7) Selected examples of guanylation reaction catalyzed by main-
group metals: (a) Zhao, F.; Wang, Y.; Zhang, W.-X.; Xi, Z. Org. Biomol.
Chem. 2012, 10, 6266. (b) Alonso-Moreno, C.; Carrillo-Hermosilla, F.;
AUTHOR INFORMATION
Corresponding Authors
■
́
́ ́
Garces, A.; Otero, A.; Lopez-Solera, I.; Rodrıguez, A. M.; Antinolo, A.
̃
Organometallics 2010, 29, 2789. (c) Koller, J.; Bergman, R. G.
2788
dx.doi.org/10.1021/om5002793 | Organometallics 2014, 33, 2784−2789