C.-A. Fan et al. / Tetrahedron: Asymmetry 19 (2008) 2666–2677
2677
14. (a) Tranmer, G. K.; Yip, C.; Handerson, S.; Jordan, R. W.; Tam, W. Can. J. Chem.
2000, 78, 527–535; (b) Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H.
B. J. Org. Chem. 1997, 62, 6733–6745; (c) Rolling, P. V.; Rausch, M. D. J. Org.
Chem. 1974, 39, 1420–1424.
15. Lesot, P.; Merlet, D.; Loewenstein, A.; Courtieu, J. Tetrahedron: Asymmetry 1998,
9, 1871–1881.
16. Lesot, P.; Sarfati, M.; Courtieu, J. Chem. Eur. J. 2003, 9, 1724–1745.
17. (a) Haaland, A.; Nilsson, J. E. Acta Chem. Scand. 1968, 22, 2653; (b) Coriani, S.;
Haaland, A.; Helgaker, T.; Jørgensen, P. ChemPhysChem 2006, 7, 245–249.
18. Lesot, P.; Lafon, O.; Zimmermann, H.; Luz, Z. J. Am. Chem. Soc. 2008, 130, 8754–
8761.
19. Sarfati, M.; Lesot, P.; Merlet, D.; Courtieu, J. Chem. Commun. 2000,
2069–2081.
20. (a) Merlet, D.; Emsley, J. W.; Lesot, P.; Courtieu, J. J. Chem. Phys. 1999, 111,
6890–6896; (b) Aroulanda, C.; Merlet, D.; Courtieu, J.; Lesot, P. J. Am. Chem. Soc.
2001, 123, 12059–12066.
References
1. (a) Wittig, G.; Pockels, U.; Dröge, H. Ber. Dtsch. Chem. Ges. 1938, 71, 1903–1912;
(b) Gilman, H.; Langham, W.; Jacoby, A. L. J. Am. Chem. Soc. 1939, 61, 106–109.
2. Historically, it should be noted that the bromine–lithium exchange reaction
might have been discovered by Marvel et al. in 1927, when they studied the
reactions of n-butyllithium in petroleum ether with various organic halides.
Marvel’s paper reported that n-BuLi reacted with o- or m-bromotoluene in
petroleum ether at rt for 4 days to afford the toluene after quenching with H2O
in 65% or 87% yield, respectively. However, the generation of o- and m-
tolyllithium as the implication of those experimental facts was not recognized
at that time. See: (a) Marvel, C. S.; Hager, F. D.; Coffman, D. D. J. Am. Chem. Soc.
1927, 49, 2323–2328; (b) Seyferth, D. Organometallics 2006, 25, 2–24.
3. For reviews on the halogen–lithium exchange reaction, see: (a) Jones, R. G.;
Gilman, H. Org. React. 1951, 6, 339–366; (b) Jones, R. G.; Gilman, H. Chem. Rev.
1954, 54, 835–890; (c) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15,
300–305; (d) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1–46; (e)
Eisch, J. J. Organometallics 2002, 21, 5439–5463; (f) Nájera, C.; Sansano, J. M.;
Yus, M. Tetrahedron 2003, 59, 9255–9303; (g) Schlosser, M. Angew. Chem., Int.
Ed. 2005, 44, 376–393.
4. For various applications of organolithium compounds, see: (a) Gschwend, H.
W.; Roderiguez, H. R. Org. React. 1979, 26, 1–360; (b) Wardell, J. L. In
Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon: New
York, 1982; Vol. 1, pp 43–120; (c) Wakefield, B. J. The Chemistry of
Organolithium Compounds, 2nd ed.; Pergamon: New York, 1990; (d) Clayden,
J. In Organolithium: Selectivity for Synthesis; Baldwin, J. E., Williams, R. M., Eds.;
Pergamon: Oxford, 2002; (e) Stey, T.; Stalke, D. In The Chemistry of
Organolithium Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: London, 2004.
5. (a) Applequist, D. E.; Brien, D. F. O. J. Am. Chem. Soc. 1963, 85, 743–748; (b) Beak,
P.; Musick, T. J.; Chen, C.-W. J. Am. Chem. Soc. 1988, 110, 3538–3542; (c) Beak,
P.; Allen, D. J.; Lee, W. K. J. Am. Chem. Soc. 1990, 112, 1629–1630; (d) Gallagher,
D. J.; Beak, P. J. Am. Chem. Soc. 1991, 113, 7984–7987; (e) Beak, P.; Allen, D. J. J.
Am. Chem. Soc. 1992, 114, 3420–3425.
21. Lesot, P. Spectra Analyse 2008, 260, 16–22.
22. Lafon, O.; Lesot, P.; Merlet, D.; Courtieu, J. J. Magn. Reson. 2004, 171, 135–142.
23. Lesot, P.; Aroulanda, C.; Billault, I. Anal. Chem. 2004, 76, 2827–2835.
24. Lesot, P.; Lafon, O.; Courtieu, J.; Berdagué, P. Chem. Eur. J. 2004, 10, 3741–3746.
25. BocN@NBoc has been extensively used as an electrophilic amination reagent.
For some reviews, see: (a) Erdik, E.; Ay, M. Chem. Rev. 1989, 89, 1947–1980; (b)
Boche, G.. In Houben-Weyl, Methods of Organic Chemistry; Helmchen, G.,
Hoffmann, R. W., Mulzer, J., Chaumann, E., Eds.; Thieme: Stuttgart, 1995; Vol.
E21e, pp 5133–5157; (c) Dembech, P.; Seconi, G.; Ricci, A. Chem. Eur. J. 2000, 6,
1281–1286; (d) Erdik, E. Tetrahedron 2004, 60, 8747–8782; (f) Greck, C.;
Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. 2004, 1377–1385.
26. Carpino, L. A.; Crowley, P. J. In Organic Synthesis; Parham, W. E., Ed.; Wiley,
1964; Vol. 44, pp 18–20.
27. Asymmetric deprotonation by the combination of (ꢀ)-sparteine and
alkyllithium (e.g., n-BuLi, s-BuLi, or t-BuLi) has been widely developed over
the last twenty years. For some reviews, see: (a) Beak, P.; Basu, A.; Gallagher, D.
J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552–560; (b) Hoppe,
D.; Hense, T. Angew. Chem., Int. Ed. 1997, 36, 2282–2316; (c) Ahlbrecht, H.;
Beyer, U. Synthesis 1999, 365–390; (d) Beak, P.; Anderson, D. R.; Curtis, M. D.;
Laumer, J. M.; Pippel, D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33, 715–
727; (e) Hoppe, D.; Christoph, G. In The Chemistry of Organolithium Compounds;
Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, 2004; pp 1055–1164.
28. CaH2 is an inert, inexpensive, and air-stable metal hydride, often used as a
moisture scavenger. For example, see: (a) Rosenbaum, C. K.; Walton, J. H. J. Am.
Chem. Soc. 1930, 52, 3568–3573; (b) Wang, Z.-M.; Zhou, W.-S.; Lin, G.-Q.
Tetrahedron Lett. 1985, 26, 6221–6224; (c) Wang, Z.-M.; Zhou, W.-S.
Tetrahedron 1987, 43, 2935–2944.
29. Kronenburg, C. M. P.; Rijnberg, E.; Jastrzebski, J. T. B. H.; Kooijman, H.; Lutz, M.;
Spek, A. L.; Gossage, R. A.; van Koten, G. Chem. Eur. J 2005, 11, 253–261.
30. Müller, P.; Nury, P.; Bernardinelli, G. Eur. J. Org. Chem. 2001, 4137–4147.
31. The enantiomeric excess of 13b or 13c could not be measured under chiral
HPLC condition (Chiral OD-H column, hexane, rt) because of the occurrence of
racemization resulting from the slow rotation around the aryl–aryl bond in
13b or 13c at rt. For a review on this phenomenon, see: Trapp, O.; Schoetz, G.;
Schurig, V. Chirality 2001, 13, 403–414.
32. The study of intramolecular dynamic processes in 13c and some deuterated
analogues has been carried out by deuterium NMR in chiral liquid crystals: (a)
Lesot, P.; Lafon, O.; Fan, C.-A.; Kagan, H. B. Chem. Commun. 2006, 389–391; (b)
Lafon, O.; Lesot, P.; Fan, C.-A.; Kagan, H. B. Chem. Eur. J. 2007, 13, 3772–3786.
33. Riant, O.; Argouarch, G.; Guillaneux, D.; Samuel, O.; Kagan, H. B. J. Org. Chem.
1998, 63, 3511–3514.
6. An enantioselective iodine/magnesium exchange reaction on
a
1,1-
diiodoalkane: Schulze, V.; Hoffmann, R. W. Chem. Eur. J. 1999, 5, 337–344.
7. (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J. Am. Chem.
Soc. 1995, 117, 9101–9102; (b) Kamikawa, T.; Hayashi, T. Tetrahedron 1999, 55,
3455–3466.
8. For recent reviews on the asymmetric desymmetrization of meso compounds,
see: (a) Spivey, A. C.; Andrew, B. I. Angew. Chem., Int. Ed. 2001, 40, 3131–3134;
(b) Rahman, N. A.; Landais, Y. Curr. Org. Chem. 2002, 6, 1369–1395; (c) Anstiss,
M.; Holland, J. M.; Nelson, A.; Titchmarsh, J. R. Synlett 2003, 1213–1220; (d)
García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313–354.
9. For reviews on the Suzuki–Miyaura cross-coupling reaction, see: (a) Miyaura,
N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b) Suzuki, A. In Metal-Catalyzed
Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; VCH: Weinheim, 1998;
pp 49–97; (c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168; (d) Chemler,
S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4544–4568;
(e) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359–1470.
10. Modrakowski, C.; Flores, S. C.; Beinhoff, M.; Schlüter, A. D. Synthesis 2001,
2143–2155.
11. (a) Adams, R.; Marvel, C. S.. In Organic Synthesis Collective Vol. I; Gilman, H., Ed.;
Wiley, 1941; pp 94–95; For the preparation of chiral benzoin
8 via the
benzaldehyde lyase, see: (b) Demir, A. S.; Sesenoglu, Ö.; Eren, E.; Hosrik, B.;
Pohl, M.; Janzen, E.; Kolter, D.; Feldmann, R.; Dünkelmann, P.; Müller, M. Adv.
Synth. Catal. 2002, 344, 96–103.
34. Ferber, B.; Kagan, H. B. Adv. Synt. Catal. 2007, 349, 493–507.
35. In this article, Schögl’s nomenclature is used for defining the absolute
configuration of disubstituted ferrocenes and the prochiral elements in the
achiral precursors such as 4, see: Schögl, K. Top. Stereochem. 1967, 1,
39–91.
12. In the reduction of the benzoin 8, some other reducing reagents were also
examined. For example, NaBH4 (MeOH/OEt2, 0 °C) and Zn(BH4)2 (THF, ꢀ15 °C)
gave meso-9 in 80% de and 88% de (de values measured by 1H NMR).
13. For the spectral data of dl-9, see: Wyatt, P.; Warren, S.; McPartlin, M.;
Woodroffe, T. J. Chem. Soc., Perkin Trans. 1 2001, 279–297.