460
R. A. Fernandes, A. B. Ingle / Tetrahedron Letters 52 (2011) 458–460
2. (a) Kusumi, T.; Ohtani, I.; Inouye, Y.; Kakisawa, H. Tetrahedron Lett. 1988, 29,
4731–4734; (b) Schmitz, F. J.; Bowden, B. F.; Toth, S. I. In Marine Biotechnology;
Attaway, D. H., Zaborsky, O. R., Eds.; Plenum Press: New York, 1993; Vol. 1, pp
197–308; (c) Norton, R. S.; Kazlauskas, R. Experientia 1980, 36, 276–278; (d)
Kobayashi, J.; Ohizumi, Y.; Nakamura, H.; Yamakado, T.; Matsuzaki, T.; Hirata,
Y. Experientia 1983, 39, 67–69.
3. (a) Jia, R.; Guo, Y.-W.; Mollo, E.; Cimino, G. Helv. Chim. Acta 2005, 88, 1028–
1033; (b) Jia, R.; Guo, Y.-W.; Mollo, E.; Gavagnin, M.; Cimino, G. J. Nat. Prod.
2006, 69, 819–822; (c) Yan, X.-H.; Li, Z.-Y.; Guo, Y.-W. Helv. Chim. Acta 2007, 90,
1574–1580.
4. Coval, S. J.; Patton, R. W.; Petrin, J. M.; James, L.; Rothofsky, M. L.; Lin, S. L.; Patel,
M.; Reed, J. K.; McPhail, A. T.; Bishop, W. R. Bioorg. Med. Chem. Lett. 1996, 6,
909–912.
5. (a) Ragoussis, N. Tetrahedron Lett. 1987, 28, 93–96; (b) Yamanaka, H.;
Yokoyama, M.; Sakamoto, T.; Shiraishi, T.; Sagi, M.; Mizugaki, M. Heterocycles
1983, 20, 1541–1544.
12. The b-hydroxyl group in the lactone 14 is correctly placed and
is to be eliminated after
unit.
a-alkylation to generate the c-butenolide
The synthesis of C5–11 fragment 15 (R = H, R0 = Me for 12)
began with the monoprotection of 1,3-propane diol 28 to give alco-
hol 22 (95%, Scheme 3). Oxidation of 22 to the aldehyde and sub-
sequent isopropenyl-Grignard addition afforded the allylalcohol
21 in 81% yield. The orthoester Johnson–Claisen rearrangement
of 21 gave the ester 20 in 92% yield. Reduction of the ester group
to the aldehyde and subsequent Wittig olefination provided the
diene 29 in 75% yield. Removal of the TBDMS group gave the alco-
hol 30 (90%) and conversion of hydroxyl to the iodide afforded the
C5–11 fragment 1512 in 91% yield.
6. Dell’ Anna, M. M.; Gagliardi, M.; Mastrorilli, P.; Suranna, G. P.; Nobile, C. F. J.
Mol. Catal. A: Chem. 2000, 158, 515–520.
In summary we have designed and successfully accomplished
the synthesis of the C4–12 fragment of sarcophytonolides E–G
and L and the C5–11 fragment of sarcophytonolide L. This first syn-
thetic effort towards the target molecules involved the orthoester
Johnson–Claisen rearrangement as the key step in the synthesis
of the C5–11 fragment while the C4–12 fragment was efficiently
assembled from the chiral pool material (R)-carvone which fixes
the isopropyl group of the target molecules and the Baeyer–Villiger
oxidation, modified Knoevenagel condensation and asymmetric
dihydroxylation as the key steps. The completion of total synthesis
of sarcophytonolide L and related molecules is underway in our
laboratory.
7. Ketone 25 is a known compound, see: Furstner, A.; Hannen, P. Chem. Eur. J.
2006, 12, 3006–3019.
8. Goswami, P.; Hazarika, S.; Das, A. M.; Chowdhury, P. Indian J. Chem., Sect B 2004,
43, 1275–1281.
9. Reviews: (a) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006, 1725–1756; (b) Bolm,
C.; Hildebrand, J. P.; Muniz, K. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.,
2nd ed.; Wiley-VCH: New York, 2000; pp 399–428; (c) Kolb, H. C.;
VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547; (d)
Johnson, R. A.; Sharpless, K. B. In Asymmetric Catalysis in Organic Synthesis;
Ojima, I., Ed.; VCH: New York, 1993; pp 227–272. For synthesis of b-hydroxy-c-
lactones see; (e) Wang, Z.-M.; Zhang, X.-L.; Sharpless, K. B.; Sinha, S. C.; Sinha-
Bagchi, A.; Keinan, E. Tetrahedron Lett. 1992, 33, 6407–6410; (f) Mohan, H. R.;
Rao, A. S. Synth. Commun. 1993, 23, 2579–2585; (g) Miyazaki, Y.; Hotta, H.; Sato,
F. Tetrahedron Lett. 1994, 35, 4389–4392; (h) Harcken, C.; Brückner, R. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2750–12752; (i) Fernandes, R. A.; Brückner, R.
Synlett 2005, 1281–1285.
10. Diastereomer ratio was determined by 1H NMR spectroscopy of the mixture.
11. Data for compound 14: ½a D25
ꢀ43.7 (c 2.2, CHCl3). IR (CHCl3): m = 3437, 3019,
ꢂ
Acknowledgements
2961, 2878, 1774, 1520, 1468, 1407, 1370, 1329, 1217, 1167, 1063, 1038, 1024,
981, 950, 900, 848 cmꢀ1 1H NMR (400 MHz, CDCl3/TMS): d = 0.94 (d, J = 7.0 Hz,
.
The authors are indebted to IRCC, IIT-Bombay for financial
support. A.B.I. is grateful to CSIR New Delhi for senior research
fellowship.
3H), 0.97 (d, J = 7.0 Hz, 3H), 1.11–1.19 (m, 1H), 1.32 (s, 3H), 1.40–1.49 (m, 1H),
1.74–1.79 (m, 1H), 1.86–1.96 (m, 2H), 2.06–2.12 (m, 2H, OH), 2.54 (d,
J = 17.4 Hz, 1H), 2.74 (dd, J = 17.4, 5.2 Hz, 1H), 3.83–4.07 (m, 4H), 4.11 (dd,
J = 11.3, 2.7 Hz, 1H), 4.44–4.46 (m, 1H). 13C NMR (100 MHz, CDCl3/CHCl3):
d = 18.2, 19.4, 19.5, 23.4, 28.0, 37.7, 39.0, 41.7, 64.3, 64.5, 68.5, 86.1, 110.4,
176.0. HRMS (ESI-TOF) (m/z) [M++Na] calcd for C14H24O5Na: 295.1521, found
295.1526.
Supplementary data
12. For some of the intermediates towards the synthesis of 15 see: (a) Schinzer, D.;
Limberg, A.; Böhm, O. M. Chem. Eur. J. 1996, 2, 1477–1482; (b) Feducia, J. A.;
Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 592–599; c Data for compound 15: IR
Supplementary data associated with this article can be found, in
(CHCl3):
m
= 3077, 2977, 2931 2857, 1694, 1640, 1447, 1378, 1246, 1217, 1167,
1112, 994, 974, 914, cmꢀ1
.
1H NMR (400 MHz, CDCl3/TMS): d = 1.61 (s, 3H),
References and notes
2.05–2.20 (m, 4H), 2.58 (q, J = 7.2 Hz, 2H), 3.11 (t, J = 7.3 Hz, 2H), 5.01 (dd,
J = 17.0, 1.5 Hz, 1H), 5.02 (dd, J = 17.1, 1.5 Hz, 1H), 5.11 (t, J = 7.0 Hz, 1H), 5.75–
5.85 (m, 1H). 13C NMR (100 MHz, CDCl3/CHCl3): d = 6.0, 16.3, 32.1, 32.3, 38.9,
114.5, 123.2, 137.6, 138.4. HRMS (ESI-TOF) (m/z) [M++Na] calcd for C9H15INa:
273.0110, found 273.0108.
1. (a) Coll, J. C.; Price, I. R.; Koenig, G. M.; Bowden, B. F. Mar. Biol. 1987, 96, 129–
135; (b) Coll, J. C.; Bowden, B. F.; Alino, P. M.; Heaton, A.; Koenig, G. M.; Nys, R.;
Willis, R. H.; Sammarco, P. W.; Clayton, M. N. Chem. Scr. 1989, 29, 383–388.