Organic & Biomolecular Chemistry
Please do not adjust margins
Page 4 of 5
COMMUNICATION
Journal Name
DOI: 10.1039/C9OB01040H
salts or diaryliodonium salts. The protocol displayed good
functional group tolerance and furnished good to excellent
yields of the product. Furthermore,
cyclization/radical-radical coupling
a
of
cascade radical
(2-allyloxy)-
phenyldiazonium salts and thiols was demonstrated.
ACKNOWLEDGMENT
The activity was generously supported by Department of Science
and Technology, Government of India (DST/TMD/SERI/S111(G)). S.K
would like to thank UGC, India and I. H would like to thank DST-
Inspire for the fellowship.
References
Scheme 4: Gram scale synthesis and synthetic utility.
1
(a) N. S. Li, J. K. Frederiksen and J. A. Piccirilli, Acc. Chem. Res., 2011,
44, 1257; (b) H. Haruki, M. G. Pedersen, K. I. Gorska, F. Pojer and K.
Johnsson, Science, 2013, 340, 987; (c) C.-S. Jiang, W. E. G. Müller, H.
C. Schröer and Y.-W. Guo, Chem. Rev., 2012, 112, 2179; (d) C. Shen,
P. Zhang, Q. Sun, S. Bai, T. S. Andy Hor and X. Liu, Chem. Soc. Rev.,
2015, 44, 291.
M. Mellah, A. Voituriez and E. Schulz, Chem. Rev., 2007, 107, 5133;
(b) P. Chauhan, S. Mahajan, and Dieter Enders, Chem. Rev. 2014,
114, 8807; (c) D. C. Cole, W. J. Lennox, S. Lombardi, J. W. Ellingboe,
R. C. Bernotas, G. J. Tawa, H. Mazandarani, D. L. Smith, G. Zhang, J.
Coupet and L. E. Schechter, J. Med. Chem., 2005, 48, 353.
For reviews on visible light photocatalysis see (a) C. K. Prier C. K, D. A.
Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; (b) D. C.
Fabrey and M. Rueping, Acc. Chem. Res. 2016, 49, 1969. (c) I. Ghosh,
L. Marzo, A. Das, R. Shaikh and B. König, Acc. Chem. Res. 2016, 49,
1566; (d) N.A. Romero, D. A. Nicewiez, Chem. Rev., 2016, 116,
10075.
In order to gain some insights on the reaction mechanism,
control experiments with radical scavengers like TEMPO and BHT
were conducted (see Supporting Information) and as expected, the
desired product was not detected. Based on these preliminary
mechanistic studies and previous literature, we propose the
following plausible mechanism for the present transformation.4,10
An electrostatic interaction between the aryldiazonium salt 2 and
DABSO would generate the complex A. The subsequent homolytic
cleavage of the N-S bond and the concomitant single electron
transfer would result in the formation of the aryl radical B, SO2 and
the radical cation intermediate C. The aryl radical reacts with SO2 to
generate arylsulfonyl radical D. On the other hand Eosin Y, on
2
3
*
visible light irradiation under goes excitation to generate eosin Y
4
5
(a) E. L. Tyson, Z. L. Niemeyer and T. P. Yoon, J. Org. Chem., 2014, 79,
1427; (b) E. L. Tyson, M. S. Ament and T. P. Yoon, J. Org. Chem.,
2013, 78, 2046
which then undergoes single electron transfer from the thiol to
form eosin Y.- and sulfenyl radical cation E. The more acidic radical
cation E loses the proton and forms the sulfenyl radical F, which
would then react with arylsulfonyl radical D to form the desired
product 3. Finally the single electron transfer to the radical cation
intermediate C regenerates Eosin Y.
(a) A. Wimmer and B. König, Beilstein J. Org. Chem. 2018, 14, 54; (b)
H. Cui, W. Wei, D, Yang, Y. Zhang, H. Zhao, L. Wang and H. Wang,
Green Chem. 2017, 19, 3520; (c) A. Guerrero-Corella, A.M. Martinez-
Gualda, F. Ahmadi, E. Ming, A. Fraile, J. Alemán, Chem. Commun.
2017, 53, 1046; (d) S. S. Zalesskiy, N. S. Shlapakov and V. P.
Ananikov, Chem. Sci. 2016, 7, 6740; (e) W. Wei, H. Cui, D. Yang, Y.
Zhang, H. Yue, C He, Y Zhang and H. Wang, Green Chem. 2017, 19,
5608; (f) R. Rahaman, S. Das and P. Barman, Green Chem. 2018, 10,
141.
6
7
(a) A. Talla, B. Driessen, N. J. W. Straathof, L.-G. Milroy, L. Brunsveld,
V. Hessel, and T. Noel, Adv. Synth. Catal. 2015, 357, 2180; (b) J.-G.
Sun, H. Yang, P. Li and B. Zhang, Org. Lett. 2016, 18, 5114.
(a) W. Li, M. Beller and X. Wu, Chem. Commun., 2014, 50, 9513; (b)
L. Malet-Sanz, J. Madrzak, S. V. Ley and I. R. Baxendale, Org. Biomol.
Chem., 2010, 8, 5324; (c) P. J. Hogan and B. G. Cox, Org. Process Res.
Dev., 2009, 13, 875; (d) R. M.Wilson and S. W. Wunderly, J. Am.
Chem. Soc., 1974, 96, 7350
8
9
(a) B. Nguyen, E. J. Emmet and M. C. Willis, J. Am. Chem. Soc., 2010,
132, 16372; (b) H. Woolven, C. Gonzalez-Rodriguez, I. Marco, A. L.
Thompson, and M. C. Willis, Org. Lett. 2011, 13, 4876; (c) A. J.
Emmet,C. S.Richards-Taylor, B.Nguyen,A. B. Garcia- Rubia, R. Hayter
and M. C. Willis, Org. Biomol. Chem., 2012, 10, 4007; (d) C. S.
Richards-Taylor, D. C. Blakemore and M. C. Willis, Chem. Sci., 2014,
5, 222.
For reviews on use of DABSO to generate sulfonyl radicals see (a) G.
Qiu, K. Zhou, L. Gaoc and J. Wu, Org. Chem. Front., 2018, 5, 691; (b)
K. Hofman, N.-W. Liu, and G. Manolikakes, Chem. Eur. J. 2018, 24,
11852.
Scheme 5: Proposed mechanism.
Conclusions
In summary, we have developed a visible-light mediated
synthesis of thiosulfonates via SO2 insertion. The reaction
proceeds via
a
radical-radial cross coupling of
photoctalytically-generated sulfenyl radicals and the
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins