At this stage, there are still limitations with regard to
the substrate scope which we hope to overcome with new
catalyst generations and optimized flow reactor setups. For
example, meta-substituted and a-oxo-carboxylic acids were
only coupled in low yields.
Notes and references
1 Metal-catalyzed cross-coupling reactions, eds. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, 2nd edn, 2004.
2 D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107,
174.
3 L. J. Gooßen, G. Deng and L. M. Levy, Science, 2006, 313,
662.
4 (a) L. J. Gooßen, W. R. Thiel, N. Rodrıguez, C. Linder and
B. Melzer, Adv. Synth. Catal., 2007, 349, 2241; (b) L. J. Gooßen,
F. Manjolinho, B. A. Khan and N. Rodrıguez, J. Org. Chem.,
2009, 74, 2620.
5 (a) L. J. Gooßen, C. Linder, N. Rodrıguez, P. P. Lange and
A. Fromm, Chem. Commun., 2009, 7173; (b) J. Cornella,
C. Sanchez, D. Banawa and I. Larrosa, Chem. Commun.,
2009, 7176; (c) P. Lu, C. Sanchez, J. Cornella and I. Larrosa,
Org. Lett., 2009, 11, 5710; (d) L. J. Gooßen, N. Rodrıguez,
C. Linder, P. P. Lange and A. Fromm, ChemCatChem, 2010, 2,
430.
In order to demonstrate how easily this flow protocol can be
scaled up, we adjusted the setup and operated the reactor in a
continuous flow mode by aspirating material from a 50 mL
stock solution under otherwise unchanged conditions. Within
6 h, we thus synthesized 1.2 g (56%) of 2-nitro-40-methyl-
biphenyl (Scheme 3).
6 J. S. Dickstein, C. A. Mulrooney, E. M. O’Brien, B. J. Morgan and
M. C. Kozlowski, Org. Lett., 2007, 9, 2441.
7 (a) Z.-M. Sun and P. Zhao, Angew. Chem., Int. Ed., 2009, 48, 6726;
(b) Z.-M. Sun, J. Zhang and P. Zhao, Org. Lett., 2010, 12, 992.
8 (a) L. J. Gooßen, N. Rodrıguez, B. Melzer, C. Linder, G. Deng and
L. M. Levy, J. Am. Chem. Soc., 2007, 129, 4824; (b) J.-M. Becht,
C. Catala, C. Le Drian and A. Wagner, Org. Lett., 2007, 9, 1781;
(c) L. J. Gooßen, B. Zimmermann and T. Knauber, Angew. Chem.,
Int. Ed., 2008, 47, 7103.
9 (a) L. J. Gooßen, N. Rodriguez and C. Linder, J. Am. Chem. Soc.,
2008, 130, 15248; (b) L. J. Gooßen, C. Linder, N. Rodrıguez and
P. P. Lange, Chem.–Eur. J., 2009, 15, 9336; (c) L. J. Gooßen,
N. Rodrıguez, P. P. Lange and C. Linder, Angew. Chem., Int. Ed.,
2010, 49, 1111; (d) L. J. Gooßen, P. P. Lange, N. Rodrıguez and
C. Linder, Chem.–Eur. J., 2010, 16, 3906.
10 (a) P. Forgione, M.-C. Brochu, M. St-Onge, K. H. Thesen,
M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006, 128,
11350; (b) R. Shang, Q. Xu, Y.-Y. Jiang, Y. Wang and L. Liu, Org.
Lett., 2010, 12, 1000.
11 R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Angew.
Chem., Int. Ed., 2009, 48, 9350.
Scheme 3 Biaryl synthesis using continuous flow.
With the long-term aim of a fully automated process for
decarboxylative cross-coupling reactions, we probed into the
development of an in-line purification unit (Scheme 4). In order
to separate the product from unreacted substrates and the
NMP solvent, the flow system was supplemented with a vessel
filled with HCl and dichloromethane (DCM). This allowed a
solvent switch from NMP to volatile DCM. Subsequent in-line
filtration of the organic layer through a silica cartridge afforded
the desired biaryl in 71% yield as a 7 : 1 mixture with
remaining NMP.
12 For reviews see: (a) L. J. Gooßen, N. Rodrıguez and K. Gooßen,
Angew. Chem., Int. Ed., 2008, 47, 3100; (b) L. J. Gooßen, F. Collet
and K. Gooßen, Isr. J. Chem., 2010, 50, 617.
13 Microwave Assisted Organic Synthesis, ed. J. P. Tierney and
P. Lidstrom, Blackwell Publishing Ltd., 1st edn, 2010.
14 (a) A. Voutchkova, A. Coplin, N. E. Leadbeater and
R. H. Crabtree, Chem. Commun., 2008, 6312; (b) L. J. Gooßen,
B. Zimmermann, C. Linder, N. Rodrıguez, P. P. Lange and
J. Hartung, Adv. Synth. Catal., 2009, 351, 2667.
15 For selected reviews see: (a) P. Watts and S. J. Haswell, Chem. Soc.
Rev., 2005, 34, 235; (b) A. Kirschning, W. Solodenko and
K. Mennecke, Chem.–Eur. J., 2006, 12, 5972; (c) B. P. Mason,
K. E. Price, J. L. Steinbacher, A. R. Bogdan and D. T. McQuade,
Chem. Rev., 2007, 107, 2300; (d) B. Ahmed-Omed, J. C. Brandt and
T. Wirth, Org. Biomol. Chem., 2007, 5, 733; (e) S. V. Ley and
I. R. Baxendale, Chimia, 2008, 62, 162; (f) K. Geyer, T. Gustafsson
and P. H. Seeberger, Synlett, 2009, 2382; (g) C. Wiles and P. Watts,
Chim. Oggi, 2010, 28, 3.
16 (a) S. L. Poe, M. A. Cummings, M. P. Haaf and D. T. McQuade,
Angew. Chem., Int. Ed., 2006, 45, 1544; (b) J. Sedelmeier, S. V. Ley,
I. R. Baxendale and M. Baumann, Org. Lett., 2010, 12, 3618;
(c) M. D. Hopkin, I. R. Baxendale and S. V. Ley, Chem. Commun.,
2010, 46, 2450.
Scheme 4 Complete flow setup including in-line purification.
In conclusion, a catalyst system and a reactor layout were
developed that for the first time allows performing decarboxy-
lative cross-coupling reactions in a continuous flow reactor.
This is an important milestone towards implementing this
modern C–C-bond forming strategy as a standard tool in
academic and industrial laboratories.
We thank David Fox for helpful discussion, and NanoKat
and the Deutsche Forschungsgemeinschaft for funding.
c
3630 Chem. Commun., 2011, 47, 3628–3630
This journal is The Royal Society of Chemistry 2011