of d1-nucleophiles. Addition reactions involving this kind of acyl
anions are called a1-d1 Umpolung which can be found in benzoin
condensation6 and the Stetter reaction.7
An Unexpected N-Heterocyclic
Carbene-Catalyzed Annulation of Enals and
Nitroso Compounds†
In contrast to the a1-d1 Umpolung, the NHC-catalytic Um-
polung of R,ꢀ-unsaturated aldehydes generates d3-nucleophiles
which show homoenolate reactivity, and thus constitute an a3-
d3 Umpolung. The first applications of the homoenolate
intermediate involving the formation of γ-butyrolactones by the
reaction of enals and aldehydes were reported by Glorius and
Bode simultaneously.8 Employing a similar strategy, Bode
described NHC-catalyzed γ-lactam formation via direct annu-
lation of enals and imine.9 Scheidt disclosed the NHC-catalyzed
amination of the d3-nucleophiles with diazene to afford pyra-
zolidinones as a single regioisomer.10 The formal [3+3]
homoenolate cycloaddition with 1,3-dipoles such as azomethine
imine and nitrone delivering bicyclic pyridazinone products and
γ-amino ester derivatives respectively was also reported by
Scheidt.11 Ying reported the NHC-catalytic reaction of direct
amidation of aldehyde with nitroso compounds for the synthesis
of N-arylhydroxamic acids. They also reported NHC-catalyzed
addition of R,ꢀ-unsaturated aldehydes to nitrosobenzene fol-
lowed by an acid-catalyzed esterification of the intermediate
Limin Yang, Bin Tan, Fei Wang, and Guofu Zhong*
DiVision of Chemistry and Biological Chemistry, School of
Physical & Mathematical Sciences, Nanyang Technological
UniVersity, Singapore 637371, Singapore
ReceiVed NoVember 11, 2008
The N-heterocyclic carbene (NHC)-catalyzed annulation of
enals with nitroso compounds in the presence of DBU in
THF has been described. Unexpected seven-membered
4-azalactones were formed according to a process involving
a 1,2-Bamberger-type rearrangement.
(3) (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. ReV.
2000, 100, 39. (b) Herrmann, W. A.; Weskamp, T.; Bohm, V. P. W. AdV.
Organomet. Chem. 2001, 48, 1. (c) Herrmann, W. A. Angew. Chem., Int. Ed.
2002, 41, 1291. (d) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 44,
1815. (e) Burgess, K.; Perry, M. C. Tetrahedron: Asymmetry 2003, 14, 951.
(4) (a) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239. (b) Enders, D.;
Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107, 5606. (c) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534. (d) Zeitler, K. Angew. Chem.,
Int. Ed. 2005, 44, 7506. (e) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem.,
Int. Ed. 2005, 44, 1907. (f) Song, J. J.; Tan, Z. L.; Reeves, J. T.; Gallou, F.;
Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193. (g) Grasa, G. A.;
Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583. (h) Nyce, G. W.; Glauser,
T.; Connor, E. F.; Mock, A.; Waymouth, R.; Hedrick, J. L. J. Am. Chem. Soc.
2003, 125, 3046. (i) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth,
R. M.; Edrick, J. L. Org. Lett. 2002, 4, 3587. (j) Louie, J.; Duong, H. A.; Cross,
M. J. Org. Lett. 2004, 6, 4679. (k) Movassaghi, M.; Schmidt, M. A. Org. Lett.
2005, 7, 2453. (l) Fischer, C.; Smith, S.; Powell, D.; Fu, G. J. Am. Chem. Soc.
2006, 28, 1472.
(5) (a) Nair, V.; Sreekumar, V.; Bindu, S.; Suresh, E. Org. Lett. 2005, 7,
2297. (b) Nair, V.; Bindu, S.; Sreekumar, V.; Rath, N. P. Org. Lett. 2003, 5,
65667. (c) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004, 3,
5130. (d) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen,
J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899. (e) Nair, V.; Bindu, S.;
Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43, 5130.
(6) (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. (b) Sheehan, J.;
Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666. (c) Enders, D.; Breuer, K.
ComprehensiVe Asymmetric Catalysis; Springer-Verlag: Heidelberg, Germany,
1999; Vol. 3, p, 1093. (d) Mennen, S. M.; Gipson, J. D.; Kim, Y. R.; Miller,
S. J. J. Am. Chem. Soc. 2005, 127, 1654. (e) Li, G.-Q.; Dai, L.-X.; You, S.-L.
Chem. Commun. 2007, 48, 852.
(7) (a) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639. (b) EndersD.
StereoselectiVe Synthesis; Springer-Verlag: Heidelberg, Germany, 1993; p 63.
(c) Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. HelV. Chim. Acta 1996, 79,
1899. (d) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002,
124, 10298. (e) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876. (f)
Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
(8) (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (b) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (c)
Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418. (d) Li, Y.;
Zhao, Z. A.; He, H.; You, S.-L. AdV. Synth. Catal. 2008, 350, 1885.
(9) (a) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131. (b) Rommel, M.;
Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2008, 17266.
The carbon-nitrogen bond-forming reactions play an out-
standing role in chemical transformations.1 To date, the
discovery of new catalytic methods for carbon-nitrogen bond
formation still remains a challenge in the continuing develop-
ment of efficient, sustainable chemical processes. In the past
decade, the inversion of the classical reactivity (Umpolung) has
provided unusual synthetic avenues for target molecules.2
N-Heterocyclic carbenes (NHCs), due to their unique electronic
characteristics, not only promote development of new organo-
metallic processes,3 but also act as Umpolung catalysts in
organocatalytic reactions,4 and as reagents in multicomponent
coupling reactions.5 The polarity reversal of carbonyl units
generates carbonyl or acyl anions which represent a useful class
† Dedicated to Professor Dr. Richard A. Lerner on the occasion of his 70th
birthday.
(1) (a) Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 8959. (b)
Guerin, D. J.; Miller, S. J. J. Am. Chem. Soc. 2002, 124, 2134. (c) Xu, L.-W.;
Xia, C. G. Eur. J. Org. Chem. 2005, 633. (d) Beller, M.; Seayad, J.; Tillack, A.;
Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368. (e) Hultzsch, K. C. AdV. Synth.
Catal. 2005, 347, 367. (f) Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290. (g)
Magriotis, P. A. Angew. Chem., Int. Ed. 2001, 40, 4377. (h) Khramov, D. M.;
Bielawski, C. W. Chem. Commun. 2005, 39, 4958. (i) Khramov, D. M.;
Bielawski, C. W. J. Org. Chem. 2007, 72, 9407.
(2) (a) Jnkelmann, P. D.; Kolter-Jung, D.; Nitsche, A.; Demir, A. S.; Siegert,
P.; Lingen, B.; Baumann, M.; Pohl, M.; Muller, M. J. Am. Chem. Soc. 2002,
124, 12084. (b) Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326. (c) Gong,
J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247. (d)
Lapworth, A. J. Chem. Soc. 1903, 83, 995. (e) Breslow, R.; Kim, R. Tetrahedron
Lett. 1994, 35, 699. (f) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407. (g)
Enders, D.; Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743.
(10) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740.
(11) (a) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. (b)
Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130,
2416.
1744 J. Org. Chem. 2009, 74, 1744–1746
10.1021/jo802515g CCC: $40.75 2009 American Chemical Society
Published on Web 01/26/2009