ꢀ
17 R. Xu, W. Schweizer and H. Frauenrath, Chem.–Eur. J., 2009, 15,
9105.
18 C.-Z. Li, Y. Matsuo, T. Niinomi, Y. Sato and E. Nakamura, Chem.
Commun., 2010, 46, 8582.
19 A. Collas, R. De Borger, T. Amanova and F. Blockhuys,
CrystEngComm, 2011, 13, 702.
20 K. Reichenbacher, H. I. Suss and J. Hulliger, Chem. Soc. Rev., 2005,
34, 22.
Orange solid, Mp ¼ 204 C.
1H NMR (CD3COCD3): 8.37 (s, 2H), 7.20 (s, 2H), 7.14 (d, 2H,
3J ¼ 3.5 Hz), 6.65 (d, 2H, J ¼ 3.5 Hz).
3
13C NMR (CD3COCD3): 156.7, 154.3, 150.9, 121.9, 117.5,
113.6.
19F NMR (CD3COCD3): ꢂ153.2 (dd, 4F, J ¼ 21 Hz, J ¼ 6
Hz), ꢂ160.3 (t, 2F, J ¼ 21 Hz), ꢂ163.4 (td, 4F, J ¼ 21 Hz,
J ¼ 6 Hz).
21 A. Facchetti, M. H. Yoon, C. L. Stern, H. E. Katz and T. J. Marks,
Angew. Chem., Int. Ed., 2003, 42, 3900.
22 D. J. Crouch, P. J. Skabara, M. Heeney, I. McCulloch, S. J. Coles and
M. B. Hursthouse, Chem. Commun., 2005, 1465.
23 D. J. Crouch, P. J. Skabara, J. E. Lohr, J. J. W. McDouall,
M. Heeney, I. McCulloch, D. Sparrowe, M. Shkunov, S. J. Coles,
P. N. Horton and M. B. Hursthouse, Chem. Mater., 2005, 17, 6567.
24 J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner and T. J. Marks,
J. Am. Chem. Soc., 2005, 127, 13476.
MS MALDI-TOF: calcd. for C24H8O2N2F10 546.06; found
546.95 (M + H).
Elemental analysis for C24H8O2N2F10: calcd. C 52.76, H 1.48,
N 5.13; found C 52.18, H 1.41, N 4.96.
Calculation of electrostatic potential surfaces
ꢁ
25 C. Videlot-Ackermann, H. Brisset, J. Zhang, J. Ackermann, S. Neon,
F. Fages, P. Marsal, T. Tanisawa and N. Yoshimoto, J. Phys. Chem.
C, 2009, 113, 1567.
26 M. C. Chen, Y. J. Chiang, C. Kim, Y. J. Guo, S. Y. Chen, Y. J. Liang,
Y. W. Huang, T. S. Hu, G. H. Lee, A. Facchetti and T. J. Marks,
Chem. Commun., 2009, 1846.
27 C. Kim, M. C. Chen, Y. J. Chiang, Y. J. Guo, J. Youn, H. Huang,
Y. J. Liang, Y. J. Lin, Y. W. Huang, T.-S. Hu, G. H. Lee,
A. Facchetti and T. J. Marks, Org. Electron., 2010, 11, 801.
28 M. H. Yoon, A. Facchetti, C. E. Stern and T. J. Marks, J. Am. Chem.
Soc., 2006, 128, 5792.
29 S. Clement, F. Meyer, J. De Winter, O. Coulembier, C. M. L. Vande
Velde, M. Zeller, P. Gerbaux, J.-Y. Balandier, S. Sergeyev,
R. Lazzaroni, Y. Geerts and P. Dubois, J. Org. Chem., 2010, 75, 1561.
30 J. A. Letizia, C. Scott, O. Rocio Ponce, F. Antonio, A. R. Mark and
J. M. Tobin, Chem.–Eur. J., 2010, 16, 1911.
31 O. Gidron, Y. Diskin-Posner and M. Bendikov, J. Am. Chem. Soc.,
2010, 132, 2148.
32 O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov and
D. F. Perepichka, Chem. Commun., 2011, 47, 1976.
33 S. Zhu, Y. Liao and S. Zhu, Org. Lett., 2004, 6, 377.
34 M. Murai, S. Yoshida, K. Miki and K. Ohe, Chem. Commun., 2010,
46, 3366.
35 M. Benaglia, F. Cozzi, M. Mancinelli and A. Mazzanti, Chem.–Eur.
J., 2010, 16, 7456.
Electrostatic potential surfaces of compounds 2 and 3 were
calculated with Gaussian 09 by using DFT method. From the
geometry adopted in the X-ray structures, single-point energy
calculations were performed by using the B3LYP/6-31g basis set.
Electrostatic potential surfaces were created by using Gausview
for a density value of 0.002 electrons per au3.
X-Ray structures
X-Ray single-crystal diffraction data for the three compounds
were collected at 293 K on a BRUKER KappaCCD diffrac-
tometer, equipped with a graphite monochromator utilizing
ꢂ
MoKa radiation (l ¼ 0.71073 A). The structures were solved by
direct methods using SIR92 (Altomare et al., 1993) and refined
on F2 by full matrix least-squares techniques using SHELXL97
(G.M. Sheldrick, 1998). All non-H atoms were refined aniso-
tropically and the H atoms were found by Fourier difference
synthesis. Absorption was corrected by the SADABS program
(Sheldrick, Bruker, 2000) for compound 1 and by Gaussian
technique for compounds 2 and 3.
36 The study of the stacking of the molecules in the structure drawn from
the data obtained in the Cambridge Database (CSD code WUSKEB)
shows an overlapping of the pentafluorophenyl and furan rings. The
ꢂ
centroid to centroid distance is 3.586(1) A, thus indicating the
existence of furan–perfluorophenyl interactions.
Acknowledgements
ꢀ
37 A. Benahmed-Gasmi, P. Frere and J. Roncali, J. Electroanal. Chem.,
C. Mallet thanks the Ministry of Education for a PhD
fellowship.
1996, 406, 231.
38 E. H. Elandaloussi, P. Frere, A. Benahmed-Gasmi, A. Riou,
ꢀ
A. Gorgues and J. Roncali, J. Mater. Chem., 1996, 6, 1859.
ꢀ
39 J. F. Favard, P. Frere, A. Riou, A. BenahmedGasmi, A. Gorgues,
M. Jubault and J. Roncali, J. Mater. Chem., 1998, 8, 363.
Notes and references
ꢁ
40 C. Mealares and A. Gandini, Polym. Int., 1996, 40, 33.
1 C. B. Aakeroy, N. R. Champness and C. Janiak, CrystEngComm,
2010, 12, 22.
41 G. Zotti, A. Randi, S. Destri, W. Porzio and G. Schiavon, Chem.
Mater., 2002, 14, 4550.
42 W. G. Skene and S. Dufresne, Org. Lett., 2004, 6, 2949.
43 F.-C. Tsai, C.-C. Chang, C.-L. Liu, W.-C. Chen and S. A. Jenekhe,
Macromolecules, 2005, 38, 1958.
44 S. A. P. Guarin, M. Bourgeaux, S. Dufresne and W. G. Skene, J. Org.
Chem., 2007, 72, 2631.
45 D. Sek, A. Iwan, B. Jarzabek, B. Kaczmarczyk, J. Kasperczyk,
Z. Mazurak, M. Domanski, K. Karon and M. Lapkowski,
Macromolecules, 2008, 41, 6653.
2 G. R. Desiraju, Angew. Chem., Int. Ed., 2007, 46, 8342.
3 M. Fourmigue, Curr. Opin. Solid State Mater. Sci., 2009, 13, 36.
4 O. Ivasenko and D. F. Perepichka, Chem. Soc. Rev., 2011, 40, 191.
5 Y. Z. Wang and A. X. Wu, Chin. J. Org. Chem., 2008, 28, 997.
6 D. Braga and F. Grepioni, Chem. Commun., 2005, 3635.
7 L. R. MacGillivray and J. L. Atwood, Nature, 1997, 389, 469.
8 M. Mas-Torrent and C. Rovira, Chem. Soc. Rev., 2008, 37, 827.
9 A. Pron, P. Gawrys, M. Zagorska, D. Djurado and R. Demadrille,
Chem. Soc. Rev., 2010, 39, 2577.
46 M. G. Schwab, M. Hamburger, X. Feng, J. Shu, H. W. Spiess,
X. Wang, M. Antonietti and K. Mullen, Chem. Commun., 2010, 46,
8932.
47 A. Bolduc, S. Dufresne and W. G. Skene, J. Mater. Chem., 2010, 20,
4820.
10 C. R. Patrick and G. S. Prosser, Nature, 1960, 187, 1021.
11 J. H. Williams, Acc. Chem. Res., 1993, 26, 593.
12 G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller,
E. B. Lobkovsky and R. H. Grubbs, J. Am. Chem. Soc., 1998, 120,
3641.
48 C. Avelino, I. Sara and V. Alexandra, Chem. Rev., 2007, 107, 2411.
49 J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem., Int.
Ed., 2007, 46, 7164.
50 J. B. Binder and R. T. Raines, J. Am. Chem. Soc., 2009, 131, 1979.
51 G. A. Halliday, R. J. Young and V. V. Grushin, Org. Lett., 2003, 5,
2003.
13 M. L. Renak, G. P. Bartholomew, S. Wang, P. J. Ricatto,
R. J. Lachicotte and G. C. Bazan, J. Am. Chem. Soc., 1999, 121, 7787.
14 B. W. Gung and J. C. Amicangelo, J. Org. Chem., 2006, 71, 9261.
15 S. E. Wheeler and K. N. Houk, J. Am. Chem. Soc., 2008, 130, 10854.
16 J. C. Collings, P. S. Smith, D. S. Yufit, A. S. Batsanov,
J. A. K. Howard and T. B. Marder, CrystEngComm, 2004, 6, 25.
This journal is ª The Royal Society of Chemistry 2011
CrystEngComm, 2011, 13, 5833–5840 | 5839